Algorithms 2020

NPHErdness: Lastday!

Letre notes are now updated Oral grading: Rus + Fri - Final HW: due liked before a Thorks juing a - Practice MT a final - up later today

To prove NP-Hardness of A: Reduce a known NP-Hard problem to A convert. + poly time stad NP-Hord general instance Jof known Problem / many of flese Marmally A solve X, reduce to Marmally A scall Subroutine

The Pattern: Reductions D) Find an NP-HEd problem, of Solve It using un prown problem des a Subroughe 3 SAT Build Call Jores Some - Find Set No Sover She How A Sold No Sover Med A Hus Poly IF! (ie might be some wierd indep set that doesn't make a SAT) Challenge: Finding Correct NP Herd problem

Sofar · CircuitSAT SAT logic> ° 35AT > o Ind. Set (so Clique graphs > Vertex Cover b. 3-Coloring So Subset Sum · Set Cover

Subset Sum Given a set of numbers X= Ex, x2, X3, ..., Xn Status and a target t, does, totain some subset of X' sum to the property Cactually did this one! See lecture from Ch. 2 Ex: Runtine: backtracking; every # is either in set, at not n#5 exponential Use DP: Ocho 312c T

Subset Sum is NP-Hard. Reduction: Vertex Cover Input: Graph G & size k Challenge: Need to construct a set of numbers, so that we hit some target sum if tonly IF a vertex cover in G of SIZE k exists. Recall: Base 4 31203=3.40+0.4+2.42 E + 1043 + 3044

Idea: Use base 4: force a target T that requires you to use only vortices, but to "cover" edges de gadget" Number edges Ooo E-1 Subset sum: E#5 $e_{0^{\circ}} = 1 = 1 = 4^{\circ} = (0 - 0)_{4}$ $C_1 = 4' = 4 = (0 - 0 - 0)_4$ $C_2 \circ b_2 = C_1^2 = [b = (0 - 100)_y$ $C_3: O_3 =$ $43 = (1000)_{4}$ $e_{E_1} = b_{E_1} = 4^{E_1} = (10.-0)_{E_2}$

For each vertex, make another #: O_{V} $\dot{\circ}$ = 4Eer into/ out of v (1 du) is hold any edge (1 du) is hold to be the big of the big o es es es web $a_u : \neq 111000_4 = 1344$ $b_{uv} :\neq 010000_4 = 256$ $a_v := 110110_4 = 1300$ $b_{uw} := 001000_4 =$ $a_w := 101101_4 = 1105$ $\overline{b_{vw}} := 000100_4 =$ $\overline{a_x} := 100011_4 \in 1029$ $b_{\nu x} := 000010_4 =$ voter#5 edge #5 (V+E)#S

Now, set T= K.4E+ 524" Why? K.4E 15 Lg - It only get & vertices, the only way to get IT is to pick & of vertex #5. Galy ledges #5 + 2 vertex #5 w/ Is in lower spot u e e E ET O etheoge # + 2 verter # any sum of #5 places has =3 in lower places In order to hit target, I veed exactly k wrtex numbers.

Proof: Size & VCZ=> Sum to T =>VC: & vortices covored all edges Then It's corresponding Sum to K.45 (tor top form) + 54° -> not guitet edges covered However, add cages to get Gum = 22°4° >t gis - E eis Numbers Subset Sum =] same cis + bis =T must have = k a's incheded a cover all est entreded e. #S

E: take the ais + bis that $= k \cdot 4^{E} + 52 \cdot 4^{C}$ $\mathcal{L} = \mathcal{L} = \mathcal{L} = \mathcal{L}$ all e #5 54m to $\mathcal{O}_{\mathcal{E}}$ So must have another 104° from a #S The votices cover all edges

Time to reduce? $V + E \pm S$ A = A = TA = A = C = O(V + E)So: If I could solve Subset Sum in poly time, I could Use Hto Solve VC. Subset Sum 15 also NP-Herd (+ since in NP, also NP-Complete)

Set Cover: Given a set U of n elements, a collection S1, S2, ..., Sm of (m) subsets of U, + a number F) =m is there a collection of k of the Si's whose union is all of U? U. ... U.3 52 K=37 Ex. $S_1 = Su_{1,1}u_{2,1}u_{3,1}$ 0 Guz Vi 542 6 V3 V0 0 V3 V0 0 elements N 2 v.c. 2 v.c. 2 c.s. 0 0 0 0 53,5, 6 0 0 2 53,5, 4 53 Subsets St. 57 M-7 600 56 Answer?

Set Cover 15 NP-Herd! Need to reduce! $\langle | C \rangle$ sets, 6,6 Poly Build: Sets, elements, + k Known Set Cover NP-Herd) DPbly IFI Could Solve So: Set cover in poly time, Could solve some known NP-HErd problem.

Reduction from vertex cover, So input is $G \neq k$. Construct: (v, E)U = each Han an edge XI, ··· XE Si's Snake a set pervoker Scontain all elements Subjectives incidents K Same ¥ K

Vertex cover of size k Set cover of size k > if vortex cover of size (c) tale flose la sets in set cover Since all edges m 6, are covered, a U=V, all items in Mare covered E: Spps & set cover then corresponds to k Vortices, ~ all clements in U were covered save Notex set cares edges

ar Alv.org > cs	2 al XIV. 1203. 1095	Search or Article ID inside arXiv (Help I Advanced search)	All papers	Broaden your search usi
Computer Se	cience > Computational	Complexity		Do
Classic	Nintendo Games	s are (Computationa	ally) Hard	• PI • Ot
Greg Aloupis	, Erik D. Demaine, Alan G	uo, Giovanni Viglietta		(license
(Submitted on 8 Mar 2012) v1), last revised 8 Feb 2015 (this version, v3))				Curre
We prove N Legend of Z 3, The Lost Metroid gan Donkey Kor	P-hardness results for five of felda, Metroid, and Pokemon. Levels, and Super Mario Wor nes; and all Pokemon role-pla ng Country games and severa	Nintendo's largest video game fran Our results apply to generalized ve ld; Donkey Kong Country 1-3; all Le ying games. In addition, we prove F il Legend of Zelda games.	chises: Mario, Donke risions of Super Marid agend of Zelda game: PSPACE-completene:	y Kong, b Bros. 1- s; all ss of the cs cs.cc cs.cc cs.cc cs.cc cs.cc cs.cc cs cs.cc cs cs cs cs cs cs cs cs cs
Comments: 36 SN	pages, 36 figures. Fixed some IB2 and Zelda 2	typos. Added NP-hardness results (wit	th proofs and figures) for	or American Refe
Subjects: Co	mputational Complexity (cs.C	C); Computer Science and Game The	eory (cs.GT)	• NA
Cite as: ar)	(iv:1203.1895 [cs.CC]	this version)		6 blo
Submission history				DBLF
From: Alan Guo	[view email]			Gr
[v1] Thu, 8 Mar 2012 19:37:20 GMT (627kb,D)				Eri
[v2] Thu, 6 Feb	2014 18:24:15 GMT (3330kb,D)			Alc
[V3] Sun, o reb	2015 19.45.26 GIVIT (3425KD,D)		Book
Which outborn o	f this naper are endorsers? I Di	sable Math.lax (What is Math.lax?)		

Left: Start gadget for Super Mario Bros. Right: The item block contains a

10:44 AM

Figure 10: Variable gadget for Super Mario Bros.

shes until it is collected by Mario.

11 of 36

Figure 11: Clause gadget for Super Mario Bros.

Figure 12: Crossover gadget for Super Mario Bros.

arXiv.org > cs > **arXiv:1711.00788**

Help | Adv

Computer Science > Computational Geometry

On the complexity of optimal homotopies

Erin Wolf Chambers, Arnaud de Mesmay, Tim Ophelders

(Submitted on 2 Nov 2017)

In this article, we provide new structural results and algorithms for the Homotopy Height problem. In broad terms, this problem quantifies how much a curve on a surface needs to be stretched to sweep continuously between two positions. More precisely, given two homotopic curves γ_1 and γ_2 on a combinatorial (say, triangulated) surface, we investigate the problem of computing a homotopy between γ_1 and γ_2 where the length of the longest intermediate curve is minimized. Such optimal homotopies are relevant for a wide range of purposes, from very theoretical guestions in quantitative homotopy theory to more practical applications such as similarity measures on meshes and graph searching problems.

active

-rch

We prove that Homotopy Height is in the complexity class NP, and the corresponding exponential algorithm is the best one known for this problem. This result builds on a structural theorem on monotonicity of optimal homotopies, which is proved in a companion paper. Then we show that this problem encompasses the Homotopic Fréchet distance problem which we therefore also establish to be in NP, answering a question which has previously been considered in several different settings. We also provide an O(log n)-approximation algorithm for Homotopy Height on surfaces by adapting an earlier algorithm of Har-Peled, Nayyeri, Salvatipour and Sidiropoulos in the planar setting.

any 120 Almost IS NP-terd. Impossible! Just solve pert neur Noximato

Friday - Finally on to LP " Monday - No class on Wed Regume