Algorithms 2020

NP-Herchessmore vedections

Recap

- HW -oral grading Thurs. +Fri.-sign-up!
- Reading - over LPS.
- Canvas -some space issues (email if you reed any Ales)
- Last HW: due before Thanksgiving

P, V. NP, $+C O-N P F$
Consider only decision problems: so Yes/No output
P Set of decision problems that can be solved in polynomial time.
?\| Ex essentially any thing we've seen (except bockfroking problem)
NP Set of problems such that, if the answer 1 's yes I you hand me mean varify/check in ferlficate I can verify/checld in polynomial, time
Ex: CRCMITSA, sorting, secochhing,
Co-NP: Can verify a "No" answer. Creutste \rightarrow Primatioy of a π no is cosy!

Den: NP-Hard X is NPHard
If \vec{X} could be solved in polynomial time, then

$$
P=N P
$$

So if any NP-Hard problem could be solved in polynomial time, then all of NP could be.

Initial ex:

To prove NP-Hardress of A:
Reduce a known NP-Hand problem to A.

normally to solve X, reduce to

The Pattern: Reductions

1) Find an NP-HEd solve it winblem, a solve it using
unknown problem as
a subroutine

Kevioof:
Need if a only if!
(ie might be some that wiener indef set that
doesnt mike a SAT)
Challenge: Finding correct UP Hard problem

So for:

- CronitSAT logic-based.
- SAT
- SAT first studied examples
- Ind. Set
- Clique
- Vertex Cover

Today
-3-Coloring

- Subset Sum Subset Sum
$(a$ wed $)$$\left\{\begin{array}{l}\text { \# based } \\ \text { problems }\end{array}\right.$

Next: Graph Coloring find has

is a map: $c: \sqrt{ } \rightarrow\left\{\frac{1}{k} \cdot o, k\right\}$
"that assigns one of that every each vertex has S2 differentry edge colors at its
end points endpoints.
Goal: Use few colors
$\frac{3}{k^{\prime \prime}}$-coloring

Brute fore: $k \cdot \underline{=} \cdot \cdots, \cdots=k^{n}$ (bactrocer-s)

Aside: this is famous!
Ever heard of map coloring?

To 2 ibis the same color
Famous theorem every plowers graph (ie map)
is 4 -colorable
not plans $k_{3,3} W_{d}^{\text {not }}$

The: 3-colorability is NP-Complate.
(Decision version: Given G, output yes/nos

In NP:
See answer is yes, give
controume the coloring
(a \# per vertex from $\{1,2,3\}$) Check each edge" to see if $c(a)=c(v)$
$G O(E)$

NP-Herd:
Reduction from 3SAT formula Given formula for JSAT $\Phi, 1(\cdots)$ we ill make a graph G_{Φ}.
$\bar{D}=$ m clause, nveriable
Q will be satisfiable

$$
\Longleftrightarrow G_{\Phi} \text { con be } \begin{gathered}
\text { b -colored. }
\end{gathered}
$$

Key notion: Build "gadgets"!
(1) Truth gadget - one triangle Why?

$\frac{\text { Must use }}{3}$ colorsestablishes a "true" color.

(3) Clause gadget:

For each clause, join 3 of the variable vertices to the "true" vertex from
the truth gadget.
Goal: if all 3 are false,

Idea: False all inputs ape colored False, cant 3-color:
Any 3 coloring of monet to red, must mete all sone impossible to
these go

3 coloring of $G \Phi$
Φ is satisfiable
Pf:
$\Rightarrow 3$ coloring:
Built Gi so that I can make each "green" be a true value, reach "red"pe a false value.
No variable + its vegahon are same color, b/c connected by edge (+ not "yellow" since in a Δw / yellow vertex)
If all in a clause re red, cant 3-color \Rightarrow each clause has \geqslant colored tree
$\stackrel{\perp}{5}$ satisfiable 2 coloring Cole each true X_{i} be green each false yellow, coloring)
(1)

(2)

Cases (8 of then), but always color if not all red on x_{i} 's

A 3-colorable graph derived from the satisfiable 3CNF formula

Time to build GI:
Cremember, need polynomial in formula size, $n+m$)

$$
\begin{aligned}
& V=3+2 n+5 m \\
& E=3+3 n+11 m
\end{aligned}
$$

Subset Sum:
Given a set of numbers

$$
\left.\frac{X}{a n d} a x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}
$$

and a target. t, does on an ant some subset of x ' sum to t

Ex: (actually did this one!
see lecture from Ch 2
Runtime:
backtracking: every \# is either in set,
use DP:
 memorize!

Subset Sum is NP-Herd
Reduction: Vertex Cover
Input: Graph $G \times$ size k
Challenge: Need to construct a set of numbers, so that we hit some target sum if sonly If a vertex caver in G of size k exists.

Recall: Base 4

$$
\begin{aligned}
31203= & 3 \cdot 4^{0}+0 \cdot 4^{1}+2 \cdot 4^{2} \\
& +1 \cdot 4^{3}+3 \cdot 4^{4}
\end{aligned}
$$

Idea: Use base 4: force a target I that requires you to use only vertices, but to "cover" edges
Number edges O..E-1
\rightarrow create a number for Subset sum:

$$
\begin{aligned}
& e_{0}: b_{0}=1=4^{0} \\
& e_{1}: b_{1}=4^{1}=4 \\
& e_{2}: b_{2}=4^{2}=16 \\
& e_{3}: b_{3}=4^{3} \\
& \vdots \\
& e_{E 1}: b_{E-1}=4^{E-1}
\end{aligned} \text { \#s }
$$

For each vertex, make another \#:

$$
a_{v}:=\underbrace{\text { many edge }_{E}^{E}+\sum_{\substack{e=i n t o f \\
\text { out of }}} 4^{i}} \begin{aligned}
& \# b_{i}
\end{aligned}
$$

Think of base 4 representation:

Now, set $T=k \cdot 4^{E}+\sum_{i=0}^{E-1} 2 \cdot 4^{i}$ Why?

Proof size k $V C \nRightarrow$ sum to T $\Rightarrow V C: \&$ vertices.
E take the a_{i} 's + bis that $=k \cdot 4^{E}+\sum_{i=0}^{E 1} 2 \cdot 4^{i}$

Time to reduce:

So: If I could solve subset sum in poly tine, I could use it to solve V'C.
\Rightarrow Subset Sum is also NP-Hed
(क since in NP, also NP-Complete)

Next time
More \# ones, * a wrap-up

Friday: On to LP!

