Algorithms 2020

NPHFAress:
ALL the graphs!

Recap:

- 3 more recdig assignments. -Sun, Thurs, o next Sun.
-H W-sign up for or a grading + group
- Lest HW-due on Wed.
before Thentsgiung
(all submitted by that weekend)

P, W, NP, $+\operatorname{co-NPE}$
Consider only decision problems: so Yes/No output
P. Set of decision problems that can be solved in polynomial time:
$?_{0} \| \frac{\text { Ex essentially any thing }}{\text { weave seen }}$ we've seen
(except bockfroding problem)
NP. Set of problems such that, if the answer, is yes I you hand me mean varify/cheock iserlficate I can verify/checle in polynomial, time
Ex: CRCuITSAT
Co-NP: Can verify a "No" answer. \rightarrow Primally of a \#
no is coy!

Den: NP-Hard X is NPHard
If $\stackrel{\rightharpoonup}{x}$ polynomial be solved in then

$$
P=N P_{1}
$$

So if any NP-Hard problem could be solved in polynomial time, then all of NP could be.

Initial ex:

To prove NP-Hardress of A:
Reduce a known NP-Hand problem to A.

normally to solve X, reduce to

The Pattern: Reductions

1) Find an NP-HEd solve it winblem, a solve it using
unknown problem as
a subroutine

Kevioof:
Need if a only if!
(ie might be some that wiener indef set that
doesnt mike a SAT)
Challenge: Finding correct UP Hard problem

Next Problem: looks more useful Independent Set:

A set of vertices in a graph wive no edges
between them:

decision version:
$\left.\begin{array}{l}\text { is there a ind set } \\ \text { of size } k \text { in } 6 ?\end{array}\right\}$

(Wait-(didn't we see this already in) \rightarrow input: $k \neq G$

Challenge: No boolean!
But reduction needs to take known NP -Hard problem a build a graph:

Well use BSAT
(but stop and marvel) a bit first...)"
First look at "gadgets" pieces in transformations

Reduction: $\begin{aligned} & \text { m clauses } \\ & \text { n literals (variables) }\end{aligned}$ Input is 3 CNF boolean

(1) Make a vertex for each literal in exch clause Sreally lists
verlentect $\rightarrow 3 m$ vertices
(2) Connect two vertices if: - they are in some clause -2 ed bes 66 m - they are a variable a
its inverse m clauses, so might add 43 midges per vertex

Example:

Reduction: spent $O(m+n)$ true building graph Gpoly!

Claim: anginal 3 SAT
formula, is Satisfiable
6 has independent set
Proof:
\Rightarrow : Assume formula is SAT . Then \exists assignment of input variables $x_{1} \ldots x_{n}$, so that formula $=$ true.
Build ind set in 6 : for each clause a $\Leftrightarrow\left(x_{i} v_{j} v_{i} y_{i}\right.$
must have something true.
Grab one of the true vars + and corr vertex to set. independent since:

- one vortex per
- no var a it rs negation can be true

上: Take ind set of size m : (in 6)
\rightarrow must have one vertex per os gadget
That corresponds to a variable!
Set var = True.
(Set other variables however you wart)

ORS, so T as bug as '1 value is the

Next one: Aique size
A clique in a graph is a subleraph which is complete - all possible edges are present.

A graph with maximum clique size 4.

How could we check if G has a dique of size k ?
Brie ${ }^{2}$ Look at all subsets of

$$
\text { kook at indices: }\binom{n}{k}=\frac{n!}{k!(n-k)}
$$

$\operatorname{exponenthal} \approx O\left(n^{k}\right)$

Decision version: Does G have
a clique of sized? a clique of size?
Input: $6+k$
Output: y or N

This is NP-Complate:
(1) In NP. Why?

Poly tine checking if yes:
If set of size k vertices is handed to me, I can check if all $\binom{k}{2} \approx O\left(k^{2}\right)$ edges in clique are in 6 .
(2) NP-Herd:

What should K -Clique? we reduce to
options: CraintSAT
Ind Set!
Input: Gook, question is does G have ind set of size l?
change $G \stackrel{\text { imply }}{\rightarrow} G^{\prime \prime}$
so that G 'has cire
$\Rightarrow G$ has ind set

- want G' have an este whenever 6 dost.

So:

Complement $\bar{G}\left(\operatorname{not} G^{\prime}\right):$ vertices of $\bar{G}=$ vertices of G look at ever par in V : if G has edge u, v, G will nat if G does not have uv, $\rightarrow G$ will have it \rightarrow add it to adj. lists
End: if poly time alg ar clique, get one for ind set.

Next: Vertex Cover
A set of vertices
inn touches every edge in 6 . we solved in a tree!
k-Vertex cover (decision version):
Given 6, $+k$,
answer Y/N if, \exists vertex cover of size.
In NP: (verifying "Yes" in poly tine)
Gwen k vertices, check if they are a cover.
For each e :
check if \geq endpoint is in k-set of vertices.
$O(v+E)$

NP-Hardress: reduce what?
(propably clique or ind set $\underbrace{\text { I }}$)
Key: If $S_{\text {set, }}$ is in is is pendent?

S is indeed, bi no edges blt y vertices in S all edges duse $\geqslant 1$ endpoint outside of $S \Rightarrow V-S$ is $V . C$

So simple reduction!
Given $G+k$ to indef. set, ask if \exists vertex cover of size $n-k$.

Next: Graph Coloring
A is $\frac{k \text {-coloring }}{\text { a map: }}$ of a graph G
Is a map: $c: V \rightarrow\left\{\frac{1}{k} \cdot, k\right\}$
"that assigns cone of k "colors" every each vertex has S2 differentery colone at has its endpoints.
Goal: Use few colors

Aside: this is famous! Ever heard of map coloring?

Famous theorem:

The: 3-colorability is NP -Complete
$\binom{$ Deasion version: Given }{ output yes $/ n_{0}}$

In NP:

NP-Herd:
Reduction from 3SAT: Given formula for ЗSAT Φ, well make a graph $G \Phi$.
(1) will be satisfiable $\Longleftrightarrow G_{\Phi} \begin{gathered}\text { con be } \\ 3-c o l o r e d .\end{gathered}$

Key notion: Build "gadgets"!
(1) Truth gadget - one

Must use 3 colorsestablishes a "true" color.
(2) Variable gadget -

(3) Clause gadget: For each clause, join 3 of the variable vertices to the "true" vertex from the truth gadget.
Goal: if all 3 are tat se,

no valid

Idea: If all inputs are colored False, cant 3-color:

3 coloring of G_{Φ}
Pf.

Final reduction image:

A 3-colorable graph derived from the satisfiable 3CNF formula $(a \vee b \vee c) \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b} \vee \bar{d})$

Time to build G_{Φ}
Cremember, need polynomial in formula size, $n+m$)

