Algorithms 2020

NP -Hardness: Reductions

Recap

- HW: oral grading next Thurs day/ Friday.
- Sign up for a group and a tine!
- Reading as usual

P, W, NP, $+\operatorname{co-NPE}$
Consider only decision problems: so Yes/No output
P. Set of decision problems that can be solved in polynomial time:
$?_{0} \| \frac{\text { Ex essentially any thing }}{\text { weave seen }}$ we've seen
(except bockfroding problem)
NP. Set of problems such that, if the answer, is yes I you hand me mean varify/cheock iserlficate I can verify/checle in polynomial, time
Ex: CRCuITSAT
Co-NP: Can verify a "No" answer. $\rightarrow$ Primally of a \#
no is coy!

Den: NP-Hard $X$ is NPHerd
If $\vec{X}$ could be solved in polynomial time, then

$$
P=N P_{1}
$$

So if any NP-Hard problem could be solved in polynomial time, then all of NP could be.

To prove NP-Hardress of A: Reduce a known NP-Herd l problem to our approach
First known NP-HErd problem:
Cook-Levine Thy: Gospel truth:
Circuit SAT is NP-Hard


More of what we think the world looks like.
Proof: involves simulating any Turing mach ines w/ a circuit.

To prove NP-Hardress of A:
Reduce a known NP-Hand problem to A.


This will feel odd, though:
To prove a new problem is hard, well shat how we, could solve a known hard problem using new problem as a subroutine?

Why?
Well, if a poly time a gorithm existed, than you'd also be able to solve the hard problem! (Therefore "can t" be any
such solution.)

Other NP-Herd Problems:
SAT: Given a boolean

$$
\begin{aligned}
& \text { formula tais there a } \\
& \text { inputs to assign so resit is 1? } \\
& \text { in }
\end{aligned}
$$


 $m$ clauses: $5=m$

In NP: we can check "yes" in poly: Given n T/Fimputs,
Scan the clauses of
check each in O(1) Total: $O(n+m)$

$$
\begin{aligned}
& n+m) \\
& n m \text { if clues } \\
& \text { are } O(n) \text { long }
\end{aligned}
$$

The: SAT is NP-Herd. only known NP. Ate
pf: Reduce CIRCIUTSAT to SAT:


Given arcuit, write equivalent boolean SAT expression
Need to use input: Crit

More carefully: input is in form of

1) For any cate, can transform:

$$
\begin{aligned}
& \text { AND } x=D-z: \quad(x \wedge y=z)- \\
& \text { or } x=\sum-z: \quad(x \vee y=z)- \\
& \text { Not } x \rightarrow D_{0}-y:(\bar{x}=y)- \\
& \text { (written } \quad \bar{x}=y)
\end{aligned}
$$

2) "And" these together, * want final out put true: move copy each clause to right)


Note:
Some boolean expressions cant be result of this conversion


Is this poly-size?
in Circuit
Given $n$ inputs $+m$ gates:
Variables: 1 per input + gate
Clauses: 1 per gate
$\leq S$ variables per chare
$\rightarrow$ result is $m$ clauses,
a $m+n$ vocables
in SAT expression
So our reduction:


The: 3SAT is NP-Herd vocables pf: Reduce crane clause, P- Reduce carcuitsel to clauses SAT.
$\tau_{\text {new }}$
$\tau_{\text {known are or }}$ all AND 2 es
DR:- Need to show any archt trogerer NO: ${ }^{\text {Can }}$ CNE form transformed to
HND: (so last reduction falls)
(so last reduction falls)
Ex: $\left(x^{v} y \vee E\right) \hat{1}(a \cdot b \vee \bar{c}) \cdots$
Steps: $\frac{1}{\text { of }}$ AND
(1) Rewrite so each gate has 2 inputs:

(2) Write formula, like in SAT.
(3) Now, change to CNF: go back to truth tables
plus
(4) Now, need 3 per clause: F introduce dummy variables

Note: Burger!

rewrite,
then pod dummy variables (Steps 2+3)
 $\wedge\left(y_{3} \vee \overline{x_{3}} \vee \overline{y_{2}}\right) \wedge\left(\overline{y_{3}} \vee x_{3} \vee z_{5}\right) \wedge\left(\overline{y_{3}} \vee x_{3} \vee \overline{z_{5}}\right) \wedge\left(\overline{y_{3}} \vee y_{2} \vee z_{6}\right) \wedge\left(\overline{y_{3}} \vee y_{2} \vee \overline{z_{6}}\right)$
$\wedge\left(\overline{y_{4}} \vee y_{1} \vee x_{2}\right) \wedge\left(y_{4} \vee \overline{x_{2}} \vee z_{7}\right) \wedge\left(y_{y_{2}} \vee \overline{x_{2}} \vee \overline{z_{7}}\right) \wedge\left(y_{4} \vee \overline{y_{1}} \vee z_{3}\right) \wedge\left(y_{4} \vee \overline{y_{1}} \vee \overline{z_{3}}\right)$ $\wedge\left(y_{5} \vee x_{2} \vee z_{9}\right) \wedge\left(y_{5} \vee x_{2} \vee \overline{z_{9}}\right) \wedge\left(\overline{y_{5}} \vee \overline{x_{2}} \vee z_{10}\right) \wedge\left(\overline{y_{5}} \vee \overline{x_{2}} \vee \overline{z_{10}}\right)$
$\left.\wedge\left(y_{6} \vee x_{5} \vee z_{11}\right) \wedge\left(y_{6} \vee x_{5} \vee \overline{z_{11}}\right) \wedge\left(\overline{y_{6}} \vee \overline{x_{5}} \vee z_{12}\right) \wedge \overline{y_{0}} \vee \overline{x_{1}} \vee \overline{z_{12}}\right)$
$\wedge\left(\overline{y_{7}} \vee y_{3} \vee y_{5}\right) \wedge\left(y_{7} \vee \overline{y_{3}} \vee z_{13}\right) \wedge\left(y_{7} \vee \overline{y_{3}} \vee \overline{z_{13}}\right) \wedge\left(y_{7} \vee \overline{y_{5}} \vee z_{14}\right) \wedge\left(y_{7} \vee \overline{y_{5}} \vee \overline{z_{14}}\right)$ $\wedge\left(y_{9} \vee \overline{y_{8}} \vee \overline{y_{6}}\right) \wedge\left(\overline{y_{9}} \vee y_{8} \vee z_{17}\right) \wedge\left(\overline{y_{9}} \vee y_{8} \vee \overline{z_{17}}\right) \wedge\left(\overline{y_{9}} \vee y_{6} \vee z_{18}\right) \wedge\left(\overline{y_{9}} \vee y_{6} \vee \overline{z_{18}}\right)$

Tall $z$ 's are dumunies
How big? Step $7=7$ gate $\Rightarrow$ \#inputs - 1
 o(mn (n our) Step $2:$ clause $\rightarrow \leq 3$ clauses Step 3: $\leq 4$

Still poly nomial:
$O(m n)$ clanses \& variables

So:

circuit is SATisfrable
3 3HT is Sahsficule

Next Problem: looks more useful Independent Set:

A set of vertices in a graph with no edges

decision version:
is there a ind set of size k in G?
(Wait-didn't we see this already!?) $\rightarrow$ input: $k \& G$

Challenge: No boolecns! But reduction needs to take known NP- Hard problem * build a graph:


Weill use BSAT (but stop and marvel a bit first...)

Reduction: $\begin{aligned} & m \text { clauses } \\ & n \text { literals (variables) }\end{aligned}$ Input is 3 CNF boolean $\overbrace{(a \vee b v c) \wedge(b v \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee C \vee d) \wedge(a \vee \bar{b} v \bar{d})}$
(1) Make a vertex for each literal in each clause $\rightarrow 3 m$ vertices
(2) Connect two vertices if: - they are in some

- they are a variable inverse

$$
(a \vee b \vee c) \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b} \vee \bar{d})
$$



A graph derived from a 3CNF formula, and an independent set of size 4.
go leaven ts negation

Claim:
formula, is Satisfiable
6 has independent set
Proof:


$$
T_{3 \mathrm{SAT}}(n) \leq O(n)+T_{\mathrm{MAXINDSET}}(O(n)) \quad \Longrightarrow \quad T_{\mathrm{MAXINDSET}}(n) \geq T_{3 \mathrm{SAT}}(\Omega(n))-O(n)
$$

The Pattern:

1) Find an NP-HEd problem, a solve it using es
unknoubroproblem as unkenowbroprobe


Proof:
Need if a only if!
(ie might be some that wien indef set that,
doesnit mike a SAT)
Challenge: Finding correct IP Hard problem

Next one: Clique \#
A clique in a graph is a subleraph which possible complete - all possible edges ore present.


A graph with maximum clique size 4.

How could we check if $G$ ?
has a clique of size $k$ ?

Decision version: Does G have
a clique of sized?
Input:
Output:

This is NP-Complete:
(1) In NP. Why?
(2) NP-Herd:

What should
K-Cligue? we reduce to
 largest independent set $\stackrel{\text { trivial }}{\leftrightarrows}$ largest clique

