Algorithms 2020

Last flow example Intro to Complexity

Recap

- HW -due Sunday now
- Next He: oral grading (over flows) during week of Nor 9 (?) (likely Now III +12, but stay APP-Hecters tuned)
- Final the before break? after break'?
Then final exam during our assigned time (plus 1-2 lars), due on Canvas 3 ?

$\rightarrow\left[\begin{array}{l}\text { Conflicts! } \\ \text { Concerns? }\end{array}\right] \begin{aligned} & \text { tell } \\ & \text { me } \\ & \text { soon }\end{aligned}$

Crazier "word problem" examples (last flow problen)
A company sells k products, - keeps records on Customers.

Goal: Design a survey to send to n customers, to get feed back.

- Each customer's survey shouldn't be too long, a should ask only about products they purchased
- Each product needs some \# of reviews from different customers

Input: - k products
$A[k[n]$ - n caus tomers records of who bought what: $A[i j] j]$ for $i \leq k, j \leq v$

- For each customer, o or 1
$C[1.0 n] C_{j}^{0}$ is max \# of - products to ask
customer 'j them about
- for each product, $\frac{P_{i}}{}$ v P[look] needed for product

Can we design a survey? use flow!

Algorithm Reduce survey design to Build a graph G: use A add $n+k+2$ vertices: one per product, customer,

$$
\begin{aligned}
& \text { Add edges: } \\
& {[S \xrightarrow[\text { capacity }]{ }= \pm[i]} \\
& \left.c_{j} \rightarrow t \text { edges } w \text { capacity }=C_{j}\right] \\
& a^{\prime \prime} \longrightarrow P i \rightarrow \text { capactge if } A[i][j]=T
\end{aligned}
$$

Mbuild G as on prev page run flow on G
$L($ Orin $O(V E))$
use flow to build survey: decompose flow paths in G for max flow: each "middle" edge, if $f(e)=1 \rightarrow p_{i} \longrightarrow C_{j}$
then add that product p_{i} to oj's survey $^{\text {n }}$
\rightarrow output: survey

Runtime: $O((n+k) n k)$
Build the G:

$$
\begin{aligned}
& V=n+k+2=O(n+k) \\
& E=\frac{n}{? \rightarrow}+\frac{k}{n}+n \cdot k=O(n k)
\end{aligned}
$$

Run Orin: $O(V E)=O((n+k)(n k))$,
use flow + get survey: check each
Correctness
Take validsurvey:
\Rightarrow build flow
put 1 flow on edge if c_{i} review p_{j}
Claim: get valid flow put necessary

Vald flow must give valid survey.
Why? $\quad C[i]=c\left(c_{i} \rightarrow t\right)$ cant be exceeded.
Get flow of value $=$

$$
\sum_{i} P[i] \text { if }
$$

all product constants

in book:

A key: flow paths give some assignment Practice: build such a graph

Correctress (cont)

Quantifying Hardness:
Fundamental question:
Are there "harder" problems?
How do we rank? Polynomial
\rightarrow runtines: \qquad

- lInear
$-n \log n$
polynomials
- quadratic
(in input)
$? ? \rightarrow$ sutexponentaital E_{x}
(backtraclarg chapter)
yes
\rightarrow Worse? Yes.
Undecidabily:
Some problems are impossible to solve!

The Halting Problem: "Turn ns ch Chine
Given a program Pang cale:Pytum input Ir does if halt or?
run n forever it given I?
$\tau_{\text {infinite loop }}$
Output: True/False
(utility should be obvious!)
Note: Cant just simulate P on II. Why?
If it goes forever, wont stop a let me answer
\rightarrow I don't know when to output true.

The [Turing 1936]:
The halting problem is
(That is, no such algorithm
Proof: (by contradiction) suppose we have such
program h:

$$
\begin{aligned}
& \text { (h) }\left(\frac{P}{\uparrow}, I\right)=\left\{\begin{array}{l}
\text { True if } P \text { salts in } I
\end{array}\right. \\
& \text { progren input False otherwise } \\
& \text { (infinite loop) }
\end{aligned}
$$

Need a contradiction now...

Now de fine a program

$$
\begin{aligned}
\text { Now de tine a program } g_{0} x(x) \\
\text { that uses } h \text { is es } I
\end{aligned}
$$

The contraction: What does $g(a) x$ do?
Call $h(g, g)$:
If $h(g, g)=$ true , that means But then o($)$ input g gould
But then gog) should]
If $h(g(g)=$ False then on inpurg lop
But then go should return false ion input g!
$\Rightarrow h$ cart exist.

So... what next?
Clearly many things
solvable. in polynomial are "tue.
Some things are impossible:?
But - What is in between?
t?? What can we do?
Idea:
Set the idea of whet are limits of (practicle) computing.

The first problem found: Boolean circuits

An And gate, an Or gate, and a Not gate.

A boolean circuit. inputs enter from the left, and the output leaves to the right.
Given a set of inputs can clearly calculate out put in linear time (in\# in puls tigates) How?

