Algorithms - Fall 2020

Flows (find day?)

Recap.

- HW due Saturday caution: I'm often busy Sunday.
- Reading as usual.
- Next HW- probably oral grading

Max flow/ Min Cut :

Many use very different techniques

- linear programming
- complex date structures
- not residual graphs

8:46 AM Mon Oct 26

50 - results per page. Sort results by Announcement date (newest first)

A Potential Reduction Inspired Algorithm for Exact Max Flow in Almost $\widetilde{O}\left(m^{4 / 3}\right)$ Time

Authors: Tarn Kathuria
Abstract: We present an algorithm for computing s - t maximum flows in directed graphs in
$\widetilde{O}\left(m^{4 / 3+o(1)} U^{1 / 3}\right)$ time. Our algorithm is inspired by potential reduction interior point methods for linear programming. Instead of using scaled gradient/Newton steps of a potential function, we take the step which maximizes therese in the potential value subject to advancing a certain amount $0 \ldots . \nabla$ More submitted 7 Sept mber, 2020. originally announced september 2020.
2. arXiv:1910.04848 [pdf, other] cs.DS cs.CC

A Fast Max Flow Algorithm
Authors: James B. Orlin, Xiao-Yue Gong
Abstract: In 2013, Orin proved that the max flow problem could be solved in $O(n m)$ time. His algorithm ran in $O\left(n m+m^{1.94}\right)$ time, which was the fastest for graphs with fewer than $n^{1.06} \operatorname{arcs}$. If the graph was not sufficiently sparse, the fastest running time was an algorithm due to King, Rao, and Tarjan. We describe a new variant of the eyes scaling algorithm for the max flow problem whose fun... ∇ More

3. arXiv:1901.01412 [pdf, other] os.DS

New Algorithms and Lower Bounds for All-Pairs Max-Flow in Undirected Graphs Authors: Amir Abboud, Robert Krauthgamer, Ohad Trabelsi
Abstract: We investigate the time-complexity of the All-Pairs Max-Flow problem: Given a graph with n nodes and m edges, compute for all pairs of nodes the maximum-flow value between them. If Max-Flow (the version with a given source-sink pair s, t) can be solved in time $T(m)$, then an $O\left(n^{2}\right) \cdot T(m)$ is a trivial upper bound. But can we do better F \quad directed graphs, recent results in fine-grai... ∇ More Submitted 9 July, 2019; v1 submitted 5 Jan fry, 2019; or finally announced January 2019.
4. arXiv:1304.2338 [pdf, other] \qquad
An Almost-Linear-Time Algorithm for Approximate Max Flow in Undirected Graphs, and its Multicommodity Generalizations
Authors: Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, Aaron Sidford
Abstract: In this paper, we introduce a new framework for approximately solving flow problems in capacitated, undirected graphs and apply it to provide asymptotically faster algorithms for the maximum s t flow and maximum concurrent multicommodity flow problems. For graphs with n vertices and m edges, it allows us to find an ε-approximate maximum s - t flow in time $O\left(m^{1+o(1)} \varepsilon^{-2}\right)$, improvi... ∇ More Submitted 23 September, 2013; vi submitted 8 April, 2013; originally announced April 2013.

Help
 Copyright
 Privacy Policy
 1 Subscribe
 Web Accessibility Assistance arXiv Operational Status

Computer Science > Data Structures and Algorithms
 Minimum Cuts in Surface Graphs

Erin W. Chambers, Jeff Erickson, Kyle Fox, Amir Nayyeri

(Submitted on 9 Oct 2019)

We describe algorithms to efficiently compute minimum (s, t)-cuts and global minimum cuts of undirected surface-embedded graphs. Given an edge-weighted undirected graph G with n vertices embedded on an orientable surface of genus g, our algorithms can solve either problem in $g^{O(g)} n \log \log n$ or $2^{O(g)} n \log n$ time, whichever is better. When g is a constant, our $g^{O(g)} n \log \log n$ time algorithms match the best running times known for computing minimum cuts in planar graphs. Our algorithms for minimum cuts rely on reductions to the problem of finding a minimum-weight subgraph in a given \mathbb{Z}_{2} homology class, and we give efficient algorithms for this latter problem as well. If G is embedded on a surface with b boundary components, these algorithms run in $(g+b)^{O(g+b)} n \log \log n$ and $2^{O(g+b)} n \log n$ time. We also prove that finding a minimumweight subgraph homologous to a single input cycle is NP-hard, showing it is likely impossible to improve upon the exponential dependencies on g for this latter problem.

Topics in Ch. 11
A mess of different ideas!
(1) Matching identify a way to ${ }^{2}$ wo th as
Bund G': More pars
(2) Disjoint paths:

Modify G: use flow Find eabath ot hent avoid
(3) "Tuple" Selection

Build a graph: flow paths
Magic:
Flows /arts solve a lot of problens!

First problem
What if we want non-intersecting paths from s to t ?
Two variants;

- Edge disjoint: No 2 paths
 visit the same edge z orly/ 1 vertex disjoint x tb
- Vertex disjoint: no 2 paths stricter! visit the sane vertex
Note: different! And both modal useful cases.
Key: Flow will decompose into paths!

Edge dispint:
Input: unweighted graph Gist.
Goal: Compute max \# of end s witt
$\tilde{\sigma}:$ Simply add capacity $=1$ to paths each edge.
Run max How, \& trace de compose int from $s \leadsto t$.
Since all flows are integral, + capacity of every edge $1 s=1$
\Rightarrow no edge will be in

max flow \Leftrightarrow max \# of ed. paths

Vertex disjoint
Build a new graph $\widetilde{6}$:

$$
\begin{gathered}
V(\tilde{\sigma})=V_{\text {in }} \text { Vout } \widetilde{G}=2 \times V(G) \\
E(\tilde{G})=\text { edge of } \bar{G}=\text { edges of } \bar{G}\} \\
\text { ted ge ven }
\end{gathered}
$$

Add capacity $=1$ to each
edge. Kun max flow $\mathrm{dg}\left(\sigma^{2}\right)$
\leftrightarrows Any flow path that enters $v_{\text {in }}$

Result: each vortex appears in only 1 flow path

Another (his) variant
Suppose edges are unlimited, but vertices have capacities.
Ex: internet routing $\left.\begin{array}{c}\text { packets queue up at } \\ \text { routers/switches }\end{array}\right]$
So: $G=(V, E)+C(v)$ give capacities on vertices How to do flow?
Build Eै: (with only edge

Correctness
max flow in G (hot exceeding vector capacities
\Rightarrow max flow in \tilde{G} ∞ edges in \widetilde{G} are fine in G flow, no vertex is exceeded \rightarrow in $\widetilde{G}, V_{\text {in }} \rightarrow v_{\text {out }}$ edges are also \leq cap
max flow in \tilde{G}
\Rightarrow max flow in 6 ∞ edges are same vertex capacities same as $v_{\text {in }} \rightarrow v_{\text {out }}$
So: compute in $\tilde{\sigma}$ (but input orin
Runtime: $O\left(V(\widetilde{G}) \times \mathbb{E}\binom{\pi}{\right.$\hline 1}$)$

$$
O\left(V^{2}+V E\right)=O[2 \cdot V(6)] \times[E(6)+V(6)
$$

Bipartite Graphs
Any graph where vertices an be divided into 2 sets
(usually L\&R)
s.t. no edges exist inside

Ex:
Maximum mattering: find edges (no 2 edges per vortex) (cm

How to compute?
Greedy Ideas:

- thatch vertex with minimum Degree first
\rightarrow tails
gives a matching but
not Targest

Iterative improvement: X use flow Given a (non-maximal) matching how to improve?

Instead, use flows: Convert G to \tilde{G} :

add sw t
direct edges of 6 from one set L to set R add edges $s \rightarrow L$
(cure vertex in L)
add. edges from vertices in R to t
give unit capacities to all edges

Algorithm: Given $G=(V, E)$ with $V=L$ UR (bipartite)
//build \widetilde{G} add sot s's adj ' lIst $=L$
add t to adj list of all $v \in R$ direct + give unit cap
// run flow
call Orin
1 get matching
trace flow paths, build match that consists of any $L \rightarrow R$ edge with $f(e)=1$
Runtime: $O(\tilde{V} \tilde{E})$

$$
\begin{aligned}
& =O((V+2)(E+V)) \\
& =O\left(V E+V^{2}\right)=O(V E)
\end{aligned}
$$

Correctness:
(1) Any matching in 6

$$
\Rightarrow \text { flow in } \widetilde{\sigma}
$$

take matching edge $e=u \rightarrow v$ set $f(e)=4$

$$
\begin{aligned}
& \text { of } f(e)=4 \\
& \text { \& } f(s \rightarrow u)+f(v \rightarrow t)=1
\end{aligned}
$$

valid, no capcuty is too
(2) Any flow in $\tilde{\sigma} \Rightarrow$ matching in G flow decomposes into unit paths, $s \rightarrow u_{n} \rightarrow v \rightarrow t$ include $u \rightarrow v$ in mate valid matting
therefore, max flow \Leftrightarrow max in $\mathbb{G} \quad$ matching

Aside: How??
(FF is somehow improving matching...)

this is our iterative improvement, tea

Crazier "word problem" examples
A company sells \Varangle products, * keeps records on customers.

Goal: Design a survey to send to n customers, to get feed pack.

- Each customer's survey shouldr't be too long, a should ask only about products they purchased
- Each product needs some \# of reviews from different customes

Input: - k products

- n customers
- records of who bought what: $a_{i j}$ for $i, k, j \leq n$
- For each customer,
C_{i} is max \# of products to ask them about
- for each product, Pi us minimum \# of revieus needed

Can we design a survey?

Algorithm

Runtime a correctress

