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/ Technique Direct With dy(\amic trees  Source(s)
Bloc_kiw O(V2E) O(VElogV) [Dinitz; Karzanov; Even and ltai;
Sleator and Tarjan]
Network simplex O(V2E) O(VElogV) [Dantzig; Goldfarb and Hao;

Push-relabel (generic)
(j(\ Push-relabel (FIFO) [Goldberg and Tarjan]
@2 Push-relabel (highest lahel) O(V2vE) — [Cheriyan and Maheshwari; Tungel]

O(VElogg/(y10gvy V) [Cheriyan and Hagerup;
King, Rao, and Tarjan]

O(V2E) O(VElogV) [Hochbaum]
o(v?) O(VElog(V?/E)) /[Hochbaum and Orlin]

O(V?E) O(VElog(V?/E)) [Goldberg, Held, Kaplan, Tarjan,
and Werneck]

\0(\/ _— Goldberg, Grigoriadis, and Tarjan]
O(V2E) - [Goldberg and Tarjan] O7
o(v?) O(VElog(V?/E)) [ 1
¢

o

Push-relabel-add games

Pseudoflow
Pseudoflow (highest lab

Incremental BFS

Compact net»ods's = [Orlin]
Figure 10.10. Several purely confibi fat um-flow algorithmfs and their running times.
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1. arXiv:2009.03260 [pdf, ps, other] math.OC

A Potential Reduction Inspired Algorithm for Exact Max Flow in Almost O(m4/3)
Time

Authors: Tarun Kathuria

Abstract: We present an algorithm for computing s-t maximum flows in directed graphs in
O(m*/3+°() 7 1/3) time. Our algorithm is inspired by potential reduction interior point methods for linear
programming. Instead of using scaled gradient/Newton steps of a potential function, we take the step
which maximizes gl &gse in the potential value subject to advancing a certain amount o... V More

Submitted 7 Sept#fber, 2020,Ariginally announced September 2020.

[pdf, other] ¢s.CC
A Fast Max Flow Algorithm
Authors: James B. Orlin, Xiao-Yue Gong

g

arXiv:1910.04848

Abstract: In 2013, Orlin proved that the max flow problem could be solved in O(nm) time. His algorithm
ranin O(nm + m!'%*) time, which was the fastest for graphs with fewer than n!% arcs. If the graph was
not sufficiently sparse, the fastest running time was an algorithm due to King, Rao, and Tarjan. We describe

anew variant of the g Scaling algorithm for the max flow problem whose runn... v More
Submitted 10 Octol inally announced October 2019.
Comments: 35 pagl

arXiv:1901.01412 [pdf, other]

New Algorithms and Lower Bounds for All-Pairs Max-Flow in Undirected Graphs
Authors: Amir Abboud, Robert Krauthgamer, Ohad Trabelsi

w

Abstract: We investigate the time-complexity of the All-Pairs Max-Flow problem: Given a graph with n
nodes and m edges, compute for all pairs of nodes the maximum-flow value between them. If Max-Flow
(the version with a given source-sink pair s, t) can be solved in time T'(m), then an O(n?) - T(m) is a

trivial upper bound. But can we do better? kgrsi{ected graphs, recent results in fine-grai... ¥ More
Submitted 9 July, 2019; v1 submitted 5 Jan inaIIy announced January 2019,
. arXiv:1304.2338 [pdf, other]

An Almost-Linear-Time Algorithm for Approximate Max Flow in Undirected
Graphs, and its Multicommodity Generalizations
Authors: Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, Aaron Sidford

IS

Abstract: In this paper, we introduce a new framework for approximately solving flow problems in
capacitated, undirected graphs and apply it to provide asymptotically faster algorithms for the maximum s-
t flow and maximum concurrent multicommodity flow problems. For graphs with n vertices and m edges,
it allows us to find an e-approximate maximum s-¢ flow in time O(ml tol) g 2), improvi... V More
Submitted 23 September, 2013; v1 submitted 8 April, 2013; originally announced April 2013.
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Computer Science > Data Structures and Algorithms
Minimum Cuts in Surface Graphs

Erin W. Chambers, Jeff Erickson, Kyle Fox, Amir Nayyeri
(Submitted on 9 Oct 2019)

We describe algorithms to efficiently compute minimum (s, #)-cuts and global minimum cuts of undirected surface-embedded
graphs. Given an edge-weighted undirected graph G with n vertices embedded on an orientable surface of genus g, our
algorithms can solve either problem in g%@n log log n or 2°®n log n time, whichever is better. When g is a constant, our
go(*’)n log log n time algorithms match the best running times known for computing minimum cuts in planar graphs.

Our algorithms for minimum cuts rely on reductions to the problem of finding a minimum-weight subgraph in a given Z5-
homology class, and we give efficient algorithms for this latter problem as well. If G is embedded on a surface with b boundary
components, these algorithms run in (g + b)o(’“'h)n loglog n and 20&+b), log n time. We also prove that finding a minimum-
weight subgraph homologous to a single input cycle is NP-hard, showing it is likely impossible to improve upon the exponential
dependencies on g for this latter problem.
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