$$
\text { Agorithms - } 2020
$$

Last of MSSP Hows

Recap
HW1 is graded
HW3-half done
Miterm sredes due
HWS - due today

- HW Sue Monday: a note Many graph problems fall into 2 types:
(1)-Given random odd problem, convert to Gecore a call an alow. find alg. Caution: input is not a graph! © put Vat
explicitly in terms of
(2) - Modify an existing alg input (carefully). So -choose psendocode, then change the dat/loop/whetever.
Get in touch if you are Struggling!

Last time : MSSP

- Johnson's alg: weighting t $O\left(V E_{1} \log V\right)$ one ges SSosinue
- Dynamic programing graph

Can we do better?

Flopd-Warshall:
Use a different $3^{\text {rd }}$ parameter:
\rightarrow index the vertices 1 ol .
(Essentially "random")
Let path $(u, v, D)=\sim_{\text {win varies }}$
shortest $u \leadsto v$ part
using only vertices 1.or
(if there is a path)
note: $\operatorname{dist}(u, v)=$

$$
\operatorname{dist}(u, v, v)
$$

How does this help??

Make a rearsion:

through only vertices numbered at most r.
Consider path $(u, v, r):$

- Use vertex r:
find best $r-1$ paths that now use vertex r
- or don't: (user-1)

$$
=\operatorname{path}(u, v, r-1)
$$

-or base case : $r=0$ cant use any other vertices

$$
\begin{gathered}
=w(u \rightarrow v) \text { if edge } \\
\text { is present }
\end{gathered}
$$

is present or O if no edge $u \rightarrow v$

$$
\operatorname{dist}(u, v, r)=\left\{\begin{array}{ll}
w(u \rightarrow v) & \text { no flor vertices } \\
\min \left\{\begin{array}{c}
\text { not user } \\
\operatorname{dist}(u, r, r-1)+\operatorname{dist}(r, v, v, r-1)
\end{array}\right. & \text { if } r=0
\end{array}\right\} \begin{aligned}
& \text { otherwise }
\end{aligned}
$$

Figure 9.3. Recursive structure of the restricted shortest path $\pi(u, v, r)$.

Runtime:
3 nested loops, each orr)

$$
\Rightarrow o\left(v^{3}\right)
$$

Amazing:
Same as B-F, SSSP.

Motivation:

Figure 10.1. Harris and Ross's nap of the Warsaw Pact rail network. (See Image Credits at the end of the book.)

More formally: ? s ty coo
Given a directed graph with two designated vertices, s and t.
Each edge is given a capacity C(e).
\rightarrow maximum amount it
Assume: can carry

- No edges enter 5. $\}$
- No edges leave t.
- Every $c(e) \in \mathbb{Z}$

Goal:
irrational
\rightarrow can it stree those in computer
Max flow: find the most we? can ship from st to t without exceeding any
capacty capacity vertus?
\rightarrow Min cut: find/smallest set $<$ of dosses to delete in order to disconnect sst

Note: Not chorstest paths!

Flows:
A flow is a function $f: E \rightarrow \mathbb{R}^{+}$, Where $f(e)$ is the amount a
flow going over edge e.
Must satisfy 2 things:

- Edge constraints: dort overload 0 券 $f(e) \leq c(e)$ edge
- Vertex constrains by design don't want product shipped in unless it can get to t $\forall \downarrow \pm s t: \sum_{u \rightarrow v} f(n \rightarrow v)$

An (s, t)-flow with value 10. Each edge is labeled with its flow/capacity.

$$
\operatorname{Value}(f)=\sum_{e \text { out of }} f(e)
$$

Cuts:
An s-t cut is a parton of the vertices into 2 sets, S and T^{T} so that:

- $t \in \frac{T z}{T}$
- $S \cap T=\phi, S \cup T=V$

The capacity of a cut is $\sum_{\overrightarrow{u v \in E}} c(\overrightarrow{u v})$
with $u \in S, v \in T$

An (s, t)-cut with capacity 15 . Each edge is labeled with its capacity.

Cuts: not always so obvious!

七

Figure 10.1. Harris and Ross's map of the Warsaw Rect rail network. (See Image Credits at the end of the book.)

Intuitively, these are connected:

Any flow from s to t needs to use those edges!
\rightarrow this means

$$
\begin{aligned}
& \text { this weans } \\
& \text { best flow, } \leq \underbrace{\text { this }}_{\substack{\text { smaller cal } 15 \\
\text { digest } \\
\text { digest }}}
\end{aligned}
$$

Note:
Well assume every pair of vertices las Jat most one edge.
So no:

Why?

- Makes calculations easier!

How? Simple transformation:

makes graph have $O(E)$ mote vertices $V \rightarrow V+E$ $E \rightarrow 2 E$

Tho: (Ford-Fullarsun'54, Elas-Feinstern- 56) The max flow value shanon'56)
Amin cut value
Wow, these seem so different.o.
One way is easy:

any flow has fo get out of S in order to reach $t \in I$
More formally:

$$
\sum_{u \rightarrow v} f(e)-\sum_{v \rightarrow \omega} f(m u t)
$$

Proof: Choose your favorite flow f and your favorite cut (S, T), and then follow

$$
\begin{aligned}
& \text { the bouncing inequalities: } \\
&=\sum_{v \in S}^{|f|} \\
&==\sum_{v \in S} \sum_{w} f(v) \text { flow ont of } S \\
&=\sum_{v \in S} \sum_{w \notin S} f(v \rightarrow w)-\sum_{v \in S} \sum_{u} f(u \rightarrow v) \\
&=\sum_{v \in S} f(u \rightarrow v) \\
& \leq \sum_{v \in S} f(v \rightarrow w)-\sum_{v \in S} \sum_{u \in T} f(u \rightarrow v) \\
& \leq \sum_{v \in S} f(v \rightarrow w) \\
&=\|S, T\|
\end{aligned}
$$

[by definition]
[conservation constraint]
[math, definition of ∂]
[removing edges from S to S]
[definition of cut]
[because $f(u \rightarrow v) \geq 0$]
[because $f(v \rightarrow w) \leq c(v \rightarrow w)$]
[by definition]

Amazingly - ho qu
 have Guestors

Key tool in proof: Residual network

Intuitively:
Shows how much more cor less) flow can be pushed through an edge.
How can we send more? look for paths

$$
\frac{f(e)}{c(e)} 0
$$

Augmenting a path:

This is just an $s-t$
path in
G_{f}.
Then, find min capacity edge on that path.
Claim: T can build a new flow whose value is bigger than f's:

Why cont we we dy? just be
greedy?

Are there any more flow paths? Yes! but reed to do is not use an edge

