Algorithms - fall 2020

Shortest paths (pu ta)

Recap:
-HW: due in 1 week

- Next HW- possibly will be $2^{\text {nd }}$ ond 1th (Staytured)

Next problem: Shortest paths
Goal: Find shortest path
from $s$ to v.
Weill think directed, but really could do undirected u/no negative edges:
Motivation:

- maps
- routing


Usually, to solve this, need neg red to solve a more general cycler problem:
Find shortest paths from vertex. every other
Called the single-source shorkst path Tree

KEY
We say an edge $\overrightarrow{u v}$ is tense If $\operatorname{dist}(u)+\frac{w(u \rightarrow v)}{\text { "dist" is }}<\frac{\operatorname{dist}(v)}{\text { that }}$

$$
\begin{aligned}
& 10, a \text { "dist" is that } \\
& \text { a guest guess so for } \\
& \text { as } 3 \text { best } 100 \text { better path }
\end{aligned}
$$

(5)



$$
\begin{array}{r}
\text { eth } \\
25, b
\end{array}
$$ -xis bad guess? could improve

If $u \rightarrow v$ is tense:
update up better path!

$$
\begin{aligned}
& \text { date u/ better } \\
& \text { dist ( } v \text { ) } \text { dist) }+w(u \rightarrow v) \\
& \text { + up } \sqrt{a t e} \text { previous }
\end{aligned}
$$

* update previous

So, relax: node

take uv edge (plus u's distance as v's new "guess"

Computing a SSSP:
(Ford 1956 - Pantzig 1957 )
Each vertex will store 2 values.
(Think of these as tentative shortest paths)

- dist (v) is length of tentative shortest of $s \leadsto v$
path (or $\infty$ if dort have an option yet)
- pred (v) is the predecessor of $p$ th on $s \sim v$ that tentative path (or NuLL if nome)?


Dijkstra (59)
(actually Leyzorek) et al 57, partzig'58)
Make the
queue:
Keep "explored" part of the graph, $S$.
Initially, $s=\{s\}+\operatorname{dist}(s)=0$
while $s+V$ :
nile $S \pm V$ :
Select node $v \notin S_{S}$ with
one edge from to $r$
grow with edge from $S$ to $v$

$$
\min _{i x=(u, v), u \in s} \operatorname{dist(u)+w(u\rightarrow v)} \text { "tensest "edge }
$$

Add $v$ to $S$, set dist $(v)$ pred $(v)$



Four phases of Dijkstra's algorithm run on a graph with no negative edges.
At each phase, the shaded vertices are in the heap, and the bold vertex has just been scanned. The bold edges describe the evolving shortest path tree.


Correctness
Thu: Consider the set Sat any point in the algorithm. For each $u \in S$, the distance dist( $u$ ) is the shortest patch distance shortest path)
pf: induction on $|S|$ : bose case: if $|S|=1$ : then $S=\{s\}$ (one vertex)
S has distance to itself! so $(s, \phi)$ is correct

IH: Spp ${ }^{\text {Clam }}=k$ holds when
IS: Consider $|s|=k \uparrow 1 \mid$ : algorithm is adding
some $v$ to $S$, which some V to S, which (b yIN) we know has only shortest paths


Clam: (b/c alg relaxed) If no negative edges, no other pate can beat one in $S$.

Back to implementation
For each $v \in S$, could check each edge t compute $D[v]+N(e)$


time to search all ede Lists

Better: a heap!
When $v$ is added to $S$ :

- look at v's edges and either insert $w$ with key
or update w's key, if dist $(v)^{w}+w\left(v-v^{\prime} w\right)$ beats current one $d^{+}(v)$ edges
Runtime: -at most EChonekey
operations -at most $E$ inserts/removes in a heap
Total:


Negative edges:
Can happen!
Example: 2 weeks ago in colloquium

in finance nance much
(not in so ads...
in

What happens with negative edges? (in Dijkstra) well, for one thing, the induction breaks! How bad is it?

If negative cycles: completely tails $\rightarrow$ rung of ever ।

If negative edges
$\rightarrow$ but no negative cycles: exponential but will stop eventually

What do we do with negative cycles?
Note: sometimes the entire goal is to find these!


Here, cycle = profit!

Well, cant be "greedy" \& take the minimum ecch time
Might repent, so need to

- compute SP-tree
- or find a negative cycle
So, back to BFS style. $\infty, \phi$

so relax initially,
Repeat - how long?? (problem) If reg cyde, repeat forever


Runtime: $V-1$ vounds guarantes eviry verter + edge thave been "hit" zonce O(VE)

Notation:
Let $(\underbrace{\left.\operatorname{din}^{(v)}\right)}_{i s t_{i}}=$ length of the shortest s-to-v path using
Ex:


$$
\begin{aligned}
& d_{\leq 1}(s)=1 \quad d_{\leq 1}\left(v_{1}\right)=10, d_{\leq 1}\left(v_{2}\right)=1 \quad d_{k_{1}}\left(v_{3}\right)=0 \\
& \text { all } 0 \quad d_{\leqslant 2}\left(v_{1}\right)=4^{2} d \leq 2\left(v_{2}\right)=1 d_{\leq 2}\left(v_{3}\right)=6 \\
& d_{\leq 3}\left(v_{1}\right)=4 \quad d_{53}\left(v_{2}\right)=1 \quad d_{\leq 3}\left(v_{3}\right)=6
\end{aligned}
$$

So: $\left[\begin{array}{l}\operatorname{dist} \leq 0 \\ \text { ( }\end{array}\right)=0$ of or all $v \neq s$,

$$
d\left(S t \leq 0(v)=\infty \quad B C-I_{v+t}\right. \text { SSSP }
$$

Claim:
Frat, after $i$
iterations of $B-F$,

$$
\operatorname{dist}(v) \leq \operatorname{dist}_{t i 0}(v)
$$

Why?
Induction on $i$ :
BC: $d_{\leqslant 0}(s) * d_{s 0}(v)$ are good
IN: $d_{s i-1}(v)$ is $\geq \operatorname{dist}(v)$



Ether $u \rightarrow v$ is terse:

$$
\operatorname{dist}(v)>\operatorname{dist}_{\leq i-1}(u)+w(u \rightarrow v)
$$

$\rightarrow$ so relax:
better $v$ guess $d(v) \simeq=\operatorname{dist}(u)+$
OR: not in $\omega(u x)$

$$
\operatorname{dist}(v)<\underbrace{\operatorname{dist}(u)+w(u \rightarrow v)}_{\pi}
$$

worse,
so keep old i-1 path

Take away
Since any path has length $\leq V-1$, dort need to repeat more than that!


Runtime: $O(V E)$

Why is $B-F$ in practice slower? cool dato Dijkstra (ElogV) $\begin{aligned} & \text { cool dater } \\ & \text { specter } \\ & 1 \text { eds }\end{aligned}$ $B-F: O(E V) 1$ edge rooks at a edges really 3 possibilities:

- G has positive weights use Dijkstra
- G has negative edges $C$ how many how bis? $\rightarrow$ use B-F (Dijkstra but works is slow)
- $G$ has negative cycles.

$$
\rightarrow \text { use B-F }
$$

The rest: an (in practice) speed-up
Think of a BFS tree:


queue: s原
more next time

Final version: Bellman's!

$$
\operatorname{dist}_{\leq i}(v)= \begin{cases}0 & \text { if } i=0 \text { and } v=s \\
\infty & \text { if } i=0 \text { and } v \neq s \\
\min \left\{\begin{array}{l}
\operatorname{mist}_{u \rightarrow v}\left(\operatorname{dist}_{\leq i-1}(u)+w(u \rightarrow v)\right)
\end{array}\right\} & \text { otherwise }\end{cases}
$$

Why??
Using is again as \# the of edges
Since all paths are $\leq V-1$, $\operatorname{dist}_{v-1}(v)$ is $\operatorname{dist}(v)$ (assuming no negative oycles)

Nicer:

| $\frac{\text { BELLMANFORDDP }(s)}{\operatorname{dist}[0, s] \leftarrow 0}$ |
| :--- |
| for every vertex $v \neq s$ |
| $\operatorname{dist}[0, v] \leftarrow \infty$ |
| for $i \leftarrow 1$ to $V-1$ |
| for every vertex $v$ |
| $\quad \operatorname{dist}[i, v] \leftarrow \operatorname{dist}[i-1, v]$ |
| for every edge $u \rightarrow v$ |
| if $\operatorname{dist}[i, v]>\operatorname{dist}[i-1, u]+w(u \rightarrow v)$ |
| $\operatorname{dist}[i, v] \leftarrow \operatorname{dist}[i-1, u]+w(u \rightarrow v)$ |

Later observation:
Really dort need the i. Just update those"tentative" distances, a trust "Fill halt.


Same runtime as prior BF (just abit more confusing!)

