Algorithms - fall 2020

Shortest Paths: $B-F$ + intro to MSSP

Recap
HW due on Monday \rightarrow over Ch 5 + 6 Otherwise, the usual!

Single Source Shortest Paths (cont)

Key idea:
store tentative tree distances ce points initially: Ss distance is 0 everyone else $=\infty$
Then iteratively updak as you consider edges

We say an edge $\overrightarrow{u v}$ is tense

Both Dijkstra and B-F relax edges in a loop until done.
Dijkstra
En "och round, finalize one "tentative" distance
loop ls -relay as you hit anew report edge (f tense)

Runtime:

$$
O(E \log \nabla)^{h o}
$$

each edge is
tense 51 time
Downside:
need no negative edges if neg. edges \rightarrow exponential (edges keep getting tense) negative cycles \rightarrow fails

Bellman-Ford:

- Relax edges for a while
- Stop when every edge
has been relaxed at least once.
If any one is still tense: you've relaxed ≥ 2 tines!

How to prove correctness?
Notation -
Let $\left(\operatorname{distsin}^{\operatorname{dr}}\right)^{2}=$ length of the shortest at most Pith ingesting
Ex:

$$
\begin{aligned}
& \rightarrow \frac{S_{2}}{d_{50}(s)=0} \frac{v_{1}:}{d_{50}\left(v_{1}\right)=\infty} \frac{v_{2}:}{d_{50}\left(v_{2}\right)=\infty} \frac{v_{3}:}{d_{50}}\left(v_{3}\right) 00< \\
& d_{E_{n}}(s)=1 \quad d_{\underline{s}_{1}\left(v_{1}\right)}=10 \quad d_{s_{1}}\left(v_{2}\right)=1 \quad d_{s_{1}}\left(v_{3}\right)=\infty \\
& \rightarrow \text { all } 0 \quad d_{\leq 2}^{g_{2}\left(v_{1}\right)}=4^{2} d \leq_{2}\left(v_{2}\right)=d_{\leq_{2}}\left(v_{3}\right)=6 \\
& \text { all } 0 \\
& d_{\leq 3}^{E}\left(v_{1}\right)=4 d_{53}\left(v_{2}\right)=1 d_{53}\left(v_{3}\right)=6
\end{aligned}
$$

If no negative doles: $d_{\Delta v-1}(v e r t e x)$ is correct distance

Claim: Frei, after i, $\operatorname{dist}_{1}(v) \leq \operatorname{dist}_{t i}(v) \leftarrow$ current "guess"
Why?
Induction on i :
$B C: i=0$

$$
=0 \text { has dist } 0
$$

$$
\begin{aligned}
& \text { S has dist } \\
& \text { all others }
\end{aligned}
$$

IH: After i-1 iterations, all tentative guesses are

TS: Now consider di (v) : built from a path \rightarrow

We know in round $i-1$, $\operatorname{dini-1}^{(u)}$ was correct for all u. Consider $u \rightarrow v$ in nextround: It was tense:

$$
\begin{aligned}
& \text { as tense: } \\
& \text { relaxed, }+d(v) \leq d(u)+w(u x))
\end{aligned}
$$

or not:
$d(v)$ is unchanged since all divilu) were correct, one of them will give
$d_{i}(v)$

The rest: speed $^{\text {an up }}$ (in practice)
BF looks at every edge. $\xrightarrow{\text { Do we need Io ? }}$
D
Think of a BFS tree +

only
consider mana
level combs
Still $\frac{\text { dst } 2}{r}$ mors

Final version：Bellman＇s！ Full circle \rightarrow rearswely！

Why？？
Using in gain as 若 of edges showing recursion \rightarrow equivalent
Since all paths are $\leqslant V-1$ ，
$\Rightarrow \operatorname{dist}_{v-1}(v)$ is $\operatorname{dist}(v)$
（assuming no negative cycles）
runtime：same
dynamic programmes！

Nicer: cleaned up DP

Later observation:
Really dort need the i.
Just update those"tentative" distances, it trust

Same runtime as prior BF (just a bit more confusing!)

Next reading (tomorrow)
SSSPS are nice, but:
What if we re dong lots of shortest path computations?
Multiple sore MSs shortest paths
Goal: precompute these, 2 store them!
How to store? big array

Then, lookup time: O(1)
\rightarrow how fast can I calade the nay.

Obvious answer
Well, we just designed two or three SSSP algorithmsuse them!

MSSP (6):
for each $v \in G: \overbrace{}^{O(v)}$ pines run SSSP (V) t?
store tree distances in dist $[s, 0]$

Runtime: $O(V \times($ SSSPalg $))$

- if un weighted or a DAG:

$$
\begin{aligned}
& \text { SSSP was } O(v+E) B E S \text { tine } \\
& \Rightarrow O(V(V+E)=O(V E+V \cdot E) \\
& =O(V E) ; O\left(V^{3}\right)
\end{aligned}
$$

- no negative edge weights: Dijkstra was O(ElogV)

$$
\begin{gathered}
\left.\Rightarrow O\left(V E \log _{E S} V\right)^{2}\right) \\
\\
\Rightarrow O\left(V^{2} \operatorname{siog} V\right)
\end{gathered}
$$

- Bellman-Ford was \Rightarrow O(VE)

$$
\begin{array}{r}
\Rightarrow O\left(V^{2} E\right) \\
=O\left(V^{4}\right)
\end{array}
$$

Now: Can we do better? t Spoiler - YES!

Side question: (it's not...)
Since negative edges are bod, why cant we just re-weight?
Idea: increase all edge weights by some amount
Doesn't work!
\square $\frac{c^{+}+c}{+c}$

$$
\begin{aligned}
& +10 \text { ed edge } \\
& +10 \\
& +3 \rightarrow 10 x
\end{aligned}
$$

Why?
change in path weight is not samebase d on $\#$ of edges also.

Another idea (that works): more complex re-weighterng Suppose each lv has a price attached, $\pi(v)$.
(Still have edge weights.)
change vertox weights

Define a new function w^{\prime} :

$$
w^{\prime}(u \rightarrow v)=\pi(u)+w(u \rightarrow v)-\pi(v)
$$

This w' will be our new weight function!
Why? preserve shortest paths, o be positive \rightarrow use Dior! faster.

Clam: under ω^{\prime}, shortest paths are the same as under w. relative order
Why?
Consider 2 s $u v$ paths: (in origins weights)

under (${ }^{\prime}$:
purple path $=\frac{\pi(\$)+\omega(\text { using })}{-\pi(v)}$
blue path $=\pi(s)+\pi($ blue $)$
still same $-\Pi(v)$
order!

Johnson's algorithm for MSS:
use this new kind of weight function!

- Run Bellman-Ford once

Li no negative cycles? or give up

- Reweight (if it works)
- Now, all paths are positive, so can use faster algorithm for other SSSP!

More Friday!

