Algorithms: fall 2020

Shortest paths (part 1)

Next problem: Shortest paths
Goal: Find shortest path
from s to v.
Weill think directed, but really could do undirected u/no negative edges:
Motivation:

- maps
- routing

Usually, to solve this, need neg red to solve a more general cycler problem:
Find shortest paths from vertex. every other
Called the single-source shorkst path Tree

Some notes:

- Why a tree? moke it a tree
 then $s \rightarrow a \rightarrow b \rightarrow c \rightarrow d \rightarrow u$ is also a shortest path.
- Negative edges? Cycles

Figure 8.3. There is no shortest walk from s to t.
\longrightarrow

Also: If undirected, can simulaferect, directed.
ie

Unless!! negative edges
so here: directed.
BIc gets. \qquad
How to solve?? flows \rightarrow in a

Important to realize:

$$
\text { MST } \neq \text { SSSP }
$$

Why? MST-global smallest
object. object.
SSSP tree: distance to one vertex

Computing a SSSP:
(Ford 1956 - Pantzig 1957)
Each vertex will store 2 values.
(Think of these as tentative shortest paths)

- dist (v) is length of tentative shorkst $s \leadsto v$ (or ∞ if dort have an option yet)
- pred (v) is the predecessor of v on that Prentative path (or NuLL if nome)?

We say an edge $\overrightarrow{u v}$ is tense

If $u \rightarrow v$ is tense: update ul better path! $\operatorname{dist}(v)=\operatorname{dist}(u)+w(u \rightarrow v)$ + update previous
So, relax: node

Algorithm:
Repeated y find tense edges of relax them. When none remain none remain form
the sired e edges form tree. needs a proof!!

To do "which "bag"? runtime: how many times can an edge be tense?
"Easy"(??) warm-up: What if unweighted distance of edges
\rightarrow use a queue
How does "tense" work?
(tint: think BF S!) each ede in

What the heck is his token??

Figure 8.6. A completgrun of breadth-first search in a directed graph. Vertices are pulled from the queue in the orders $\begin{array}{ll}b d & c\end{array}$ in the queue at the endefeach phase. Bold edges describe the evolving shortest path tree.

$2^{\text {nd }}$ version (warm-up) What if directed

Remember: helps to have all "closer" vertices done before Computing your distance no Cycles!
Well know something topological order! get an order that does all "closer" edges to s first

Dijkstra (59)
(actually Leyzorek et al '57, Pant zig 158)
Make the
queue: Dag a priority
Keep "explored" part of the graph, Sat :
Initially, $S=\{s\}+\operatorname{dist}(s)=0$
While $s \pm V:$
Select node nod $\$ S_{S}$ with
grow with edge from S to v

$$
\min _{e=(u, v), u \in s t(u)+w(u \rightarrow v)} \text { densest "edge }
$$

Add v to S, set dist (v) p pred (v)

Four phases of Dijkstra's algorithm run on a graph with no negative edges. At each phase, the shaded vertices are in the heap, and the bold vertex has just been scanned. The bold edges describe the evolving shortest path tree.
(find nice animations!)

Correctness
Thu: Consider the set S at any point in the algorithm. For each $u \in S$, the distance dist (u) is the shortest pate distance shortest path)
pf: induction on $|S|$: bose case: if $|S|=1$: then $S=\{s\}$ (one vertex)

$$
\text { shes distance } 0
$$ to itself! so (S, ϕ) is correct

IH: Spp \mid clam holds when $|s|=k-1$.

IS: Consider $|s|=k$: algorithm is adding
some some $d(\omega+w(w \rightarrow v)$

Why is this correct? all other vertices would give lager s-p to v

Back to implementation
run time:
For each $v \in S$, could check each edge * compute runtime?

Better: a heap!
When v is added to S :

- look at v's edges and either insert w with key dist $(v)+w(v \rightarrow \omega)$
or update w 's key,
If dist $(v)^{w}+w(v-2 w)$ beats current one

Runtime:

- at most m Choncekey
operators in heop -at most n inserts/removes

