Algorithms (2020)

Graphs (p+3)

Recap

- HO 4 (Greed) is up. due in 1 week (wed.)
- Reading as usual
- No office hours on Friday. G email me if want a time on Thursday

Last tome Herative seach aljorition (not rearsive)

Ufind if any/every node connects to

Need to show it marks all vertices reachable from
s, of no others.
Proof: mduction!

- S is marked
- Assume vertices at distance (\#edges) $k-1$
are marked $\forall-1$ are marked $\frac{\downarrow}{t}$ will also be marked

To show it's a tree: trace all those parent "pointers"
There are $n-1$, one per vertex (other than S). pony update d
no cycles a n-1 edges mantle
\Rightarrow a tree
Why? see dis. moth book, or exercise $\frac{1}{c h}$ of this chapter.
Other notes:

- "Best-first" search:

Wait for next chaptersthese are a bit whore subtle, time well spend

- Directed - see chapter 6.

Well-known variants:
(cool demo last time)
$B F S$: bag is queue \Rightarrow Short "busty ${ }^{r}$ 11 ubs of r $\rightarrow(X X)<$ all dist 2
DHS

Other data structires?
these two r are fast'

Next - other useful questions this can address...

In a disconnected graph:
Often wont to count or label the components of the graph?
(WFS(v) will orly visit the belongs to.) that y s (the root)

Solution: Call it more than one time! $g^{\text {lob ut }} \rightarrow$ un mark all vertices For all vertices v : if v is unmarked: WFS (v) - marks entree

Result:

runtive: $O(v)+O(v+E)$ $=O(V+E)$

Finally, can even record which com ponent each vertex belongs to:

basically WFS where count is passed in also.

$$
\operatorname{con} t=* 2
$$

$$
O(v+E)
$$

DIn: Reduction
A reduction is a method of solung a problem by transforming it
Note: you've seen/dore this in other classes! \rightarrow every data structure on object or subroutine.
Weill see these! a ton of (Especially common in graphs...)
Key: Take whatever input, a convert it to a form that other problem solves.

First example:
Given a pixel map, the flood- fill operation lets you select a pined * change the color of it a all the pixels in its
region. region. n

How? size of $G: O\left(n^{2}\right)$ for $n \times n$ pixel inge ge Could do some crazy pixel No. algorithm.
Build a graph: let each pore be a vertex. Connect if same color, o if n bras: n^{2} vertices $=V$ $4 n^{2}$ edges $=$

So: Build a graph from pixels.

* Runtime: in terms of input

Algorithm y nun pixel array
 If pixel p ps selected: Find corresponding vertex p in graph
\sim WIS (p, color $)$
$O(V+E)$ variant where marking instead colors the vertex

Arguably, these reductions are the most important thing ingraphs!
Like data structures - you wort usually have to recode everything.
Instead.
-Set up graph t takes tire

- Call some algorithm
usually based on input size, not voE
So vantime/correctress:
tracking so that algor suit tracking so that algorithin's vat interns ansewer gives corrects of input, answer on input.

Next chapter:
All about directed graphs!
First, though, some things to recall.: graph traversals.

- Pre-order (v)
visit V
visit all children (if present)
- Post-order:
visit all children visit v.
- In-order: (binary trees)
visit left child.
visit self (v)
visit right chi ld

Example: print tree

Preppipefor children
Pre-order:
SCVIOLERELIPONT
post-order:
TLOVECOMPUTERS
Ir-order:
IVLOCESROPMMET

He will bring up "lifespan" of a node, if implemented recursively 5 of DFS

- imagine a "clock" incrementing each time an edge istroversed: activates when marked. ends when lost child rearsion ends

Figure 6.4. A depth-first forest of a directed graph, and the corresponding active intervals of its vertices, defining the preordering abfgchdlokpeinjm and the postordering dkoplhcgfbamjnie. Forest edges are solid; dashed edges are explained in Figure 6.5.

