Algorithms -Fall 2020

Graphs:
BPS - IFS

Recap

- HW3-due today (GRouPS!)
-HW 4-up tonight, due next week
- Reading as usual

Last time: Graphs'
Lots of notation, keep this definitions, i initial sector properties.

Today: Searching
Q: are $\frac{u}{12}+\frac{1 n}{}$ connected


Graph Searching
How can we tell if 2 vertices are connected?
Remember, the computer only has:




Bigger question: can we tell if all the vertices are 7 in a single connected component?

Possibly you saw depth frost search (DFS) or breadth fist search (BFS) in data structures:


These are essentially just
search strategies:
search strategies:
How can we decide if How can we decide if
First question: bag?l

$$
\begin{aligned}
& \Rightarrow \text { DFS: Stacc } \\
& \text { BFS: queue } \\
& \left\{\begin{array}{l}
\text { heaps } \\
\text { PQ weighted } \\
\text { edges }
\end{array}\right] \text { later cher }
\end{aligned}
$$

Can use this to build a spanning tree:
acyclic graph touching
all edge

: BFS tree:
$v_{7} \rightarrow v_{4}$


Just remember: different!


Runtime:
ugly.

$\rightarrow$ Each vertex: visited at most once when visited: first tine, add edges to DS "by" 1 mark wotex other time: $O(1)$ check

Correctness:
Claim: WFS will mark all reachable vertices. $\longleftarrow$
Pf: induction on distance to the source:
$d=0: \quad s!$
it is marked
d>0: Consider $v$ at distance


By IH: V $V_{d-1} 15$ marked correctly.

That weans $V_{d-1}$ was marked!

| $\frac{\text { WhateverFirstSEARCH }(s):}{\text { put } s \text { into the bag }}$ |
| :---: |
| while the bag is not empty |
| take $v$ from the bag <br> if $v$ is unmarked <br> mark $v$ |
| $\frac{\text { for each edge } v w}{}$ |
| put $w$ into the bag |

$\rightarrow$ all its edges were added to "bog"
so edge $V_{d-1} \rightarrow V$ (distanced) was added.
$G$ at sone point, removed * marked.

Claim: marked v's + parents form a spanning tree. (see demo's...)
proof:

| WhateverFirstSEARCH $(s):$ |  |
| :---: | :---: |
| put $(\varnothing, s)$ in bag |  |
| while the bag is not empty |  |
| take $(p, v)$ from the bag |  |
| if $v$ is unmarked | $(\star)$ |
| mark $v$ |  |
| parent $(v) \leftarrow p$ |  |
| for each edge $v w$ |  |
| put $(v, w)$ into the bag | $(\star \star)$ |

de For each marked vertex: someone added it'.

( $p, v$ ) pair next $(u, v)$ edge $\rightarrow$ already marked added $n-1$ edges, no cycles $\Rightarrow$ tree

In a disconnected graph:
Often wont to count or label the components of the graph?
(WFS(v) will only visit the belongs to.)


Solution: Call it more
than one time!
un mark all vertices For all vertices v:

CountComponents( $G$ ):
count $\leftarrow 0$
for all vertices $v$
unmark $v$
for all vertices $v$
if $v$ is unmarked
count $\leftarrow$ count +1
WhateverFirstSearch $(v)$
return count



CountAndLabel（G）：
count $\leftarrow 0$
for all vertices $v$
unmark $v$
for all vertices $v$
if $v$ is unmarked count $\leftarrow$ count +1 LABELONE $(v$, count $)$
return count

《（Label one component〉》
LABELONE（ $v$ ，count）：
while the bag is not empty take $v$ from the bag if $v$ is unmarked mark $v$
$\operatorname{comp}(v) \leftarrow \underline{\text { count }}$ for each edge $v w$ put $w$ into the bag


Next time:
Reductions \& applications.

