Algorithms (Fall 280)

Dynamic Pro. (pts)

- Edit distance

HW2-grading ends today HWI - mot graded yet.
Reading as usual
HW 3 -coming soon written

Edit distance:
HUGE in bioinformatios!
One of the basic tools in sequence alignment.
(I have a book with an entire chapter on how to optimize.) Here: insert delete "mutate" ${ }^{+1} \approx$
How to begin? (Recursively!)

$$
\begin{aligned}
& \text { - } 34562 \text { 告n }^{n} \\
& \rightarrow A: A L G O R 1 /(M) \\
& \rightarrow \text { B: ALTRUISm T (C) } \\
& \text { T234s.67890rem }
\end{aligned}
$$

Start at end o ask "obvious" question:
$M+C$ could be "aligned" $\rightarrow+1$
or not: M deleted, or C deleted
thy all!

$\langle A[i]+B[j]$
match, delete, or insert

Input: $A[1 \ldots n]$

$$
B[10 . m]
$$

$\left.\left.\left.\operatorname{Edt}(A, B)^{(1.0}\right]^{\circ} \cdot 0\right]^{\circ}\right\}$

4 (xdelete it Edit $(i-1, j)$

- Base coses:

Bachfrocersin
rearsion

$$
\left.\begin{array}{l}
\text { ase coses: } \\
A[0]+B[0]=0 \\
A[1]+B[0]=1 \\
A[0]+B[1]=1
\end{array}\right\}
$$

His way:

memorize!
So: what's our "memory" data structure?

$$
\begin{aligned}
A: O & \leq i \leq m \\
B: O & \leq j \leq m \\
G & \text { requires storing } 1 \\
& (i, j) \\
& \Rightarrow n a d u e \text { for table table }
\end{aligned}
$$

Then, our algorithm:

- start w/ base case (row a column)
- Fill in :

-If these 3 are computed already, then O(1) to fill in cell (i, j)
either row by row, either row by row,
or column by column
order

Result

Time: nested for loops 2 rows
 $\leftrightarrow 0(m n)$
Space: $n \times m$ table

$$
\begin{aligned}
& m \text { table (sirs of } \\
& =O(m r) \text { (sec) }
\end{aligned}
$$

Subset Sum (revisited)
Key takeaway (Ithink):
Sometimes, our backtracking recurrences can be memorized.
(Note: Sometimes, they cont!
Think n queens.)
Recall:
Given a set X[1.0n] of numbers + a Forget T find a subset of X whose sum is $=T$.

Ch 2 solution

《〈Does any subset of X sum to T ？$\rangle\rangle$
SubsetSum (X, T) ：
if $T=0$

return True
else if $T<0$ or $X=\varnothing$
return FALSE
else
$x \leftarrow$ any element of X
with $\leftarrow \operatorname{SubsetSum}(X \backslash\{x\}, T-x)$
〈〈Recurse！$\rangle\rangle$
wont $\leftarrow \operatorname{SubsetSum}(X \backslash\{x\}, T)$〈〈Recurse！$\rangle\rangle$
return（with \vee wout）

$$
\begin{aligned}
& S S(i, t)=T \text { or } F \\
& (C \text { isis } \quad 0 \leq t \leq T \\
& \text { item in } \quad \text { possible sum }
\end{aligned}
$$

So: another $2-d$ table! To decide:

fill
"tell look at these 2 cells.
one note: if $t-x[i]<0$, wasting time! Equivalent to:

Now - need to code this:

How should our loops go?

Fill: check if $t<x[i]$

$$
G \text { then SS (sst) } V_{\text {in orig }} \text { input }
$$

If not: $(4)(i+1, t)$ also need $s(i+1, t-x[i])$

His code:

tive a space:O(nT)

Wait, though:
Do we need this table?!

- It has a row for every value 1..T.
But Ican be huge!
Ex: list of 1000 \#s, all $\leqslant 9000$
But T can be in the millions! (a most of those 1.0.T are impossible to hit.)
 host of
these ore
empty! 2
wight be better. 100 milos
than

Balanced search trees (gain)
Recall:
What is the "best" one?
Recap;

Time to search for k in T

Stepping back even more. Suppose Tholds 1 .on a searches are x_{1}, \ldots, x_{m}
Some searches are "easier":

$$
\text { If } x_{1}=x_{2}=\cdots=x_{m}=1
$$

then $T=$
is optimal!
Why?
So "best" can change depending on the searches.
Balanced mincloon
$\log n$
(I)

Here: given, $X[1 \ldots n] 2 \# S$ $F[1.0 n] \geq$ freq sorted $n \ldots-1$
element X $[i]$ will have $F[i]$ searches
Intuitively - want higher F[i] to be closer to the root!
Last chapter:

$\operatorname{OptCost}(i, k)= \begin{cases}0 & \text { if } i>k \\ \sum_{j=i}^{k} f[i]+\min _{i \leq r \leq k}\left\{\begin{array}{c}\text { Opt Cost }(i, r-1) \\ + \text { Opt Cost }(r+1, k)\end{array}\right\} & \text { otherwise }\end{cases}$
Use this to build the "best" tree:
Choose root.
Recursively find best left subtree, \& best right subtree.
(Note: fry all roots in back tracking!

How to memorize?

$$
\operatorname{OptCost}(i, k)=\left\{\begin{array}{ll}
0 & \text { if } i>k \\
\sum_{j=i}^{k} f[i]
\end{array} \min _{i \leq r \leq k}\left\{\begin{array}{r}
\operatorname{Opt} \operatorname{Cost}(i, r-1) \\
+\operatorname{OptCost}(r+1, k)
\end{array}\right\} \quad\right. \text { otherwise }
$$

Remember input: ido root

buIld best tree here
Everyone here pays $\sum_{j=i}^{k} f[i]$, so First precompute \& store these sums. Tine/space:

Let $F[i][k]=\sum_{j=i}^{k} f[j]$
Now:

Memorize: $0 \leq i \leq k \leq n$
So: $2+$ table!
Each O[i][k] needs:

- $F[i][k]$
- and

$$
\operatorname{OptCost}(i, k)= \begin{cases}0 & \text { if } i>k \\
F[i, k]+\min _{i \leq r \leq k}\left\{\begin{array}{c}
\operatorname{OptCost}(i, r-1) \\
+\operatorname{OptCost}(r+1, k)
\end{array}\right\} & \text { otherwise }\end{cases}
$$

Dynamic Programming on Trees
Independent Set:
(nice preview of graphs)

Notoriously hard!
But-can solve on simpler graphs.

Trees:
Not always binary!

Din:

Hoe, we will "root" the tree.

Inde pendent set in a tree

Less clear:

So - not always "grab biggest level".
(le-dor't be greedy!!)

Recursive approch:
consider the root.
could include, or not.
Back tracking!

$$
\operatorname{Mis}(v)=\{
$$

include \checkmark
don't include v

