Algorithms

Dynamic Programming (par tl)

Recap:

- \#Schdar strike to day: weill cover algorithmic fairness a bit later in course

$$
(c h 4)
$$

Ill be assigning an extra 'll be assigning an extrall
credit reeding in Perusal
(optioned!!)

- HW-due next week planning on oral grading, but stay tuned -sign-up details coming
on Caves (over backtracking only)
- Reeding: every Sunday a

Dynamic Programing

- a fancy term for smarter
relarsion:
memorization
- Developed by Richard Bellmen

$$
\text { in mid - } 1950 \mathrm{~s}
$$

"programming" here actually means planning or scheduling)
Key: when recursing, if many recursive calls to overlapping subcases, remember prior results and don t do extra work!

Simple example:
Fibonacci Numbers: faimliar

$$
F_{0}=0, \quad F_{1}=1, \quad F_{n}=F_{n-1}+F_{n-2^{2}}
$$

$0,1,1,2,3,5,8,13,21, \ldots$
Directly get an algorithm

$$
F_{1} B(n): \text { assuming } n \geq 0
$$

if $n<2$ return $n]$ bose cases
else

$$
\text { return } F B(n-1)+F \mid B(n-2)
$$

Runtime

$$
T(n)=T(n-1)+T(n-2)+O(1)
$$

exponential \longrightarrow go check discrete math

$$
=O\left(\phi^{n}\right)^{\text {reference }} \phi=\frac{1+\sqrt{3}}{2}>
$$

Applying memorization:
 values.
(stored by computer) "memo function" (lookup cost) applying some cats structure

Better yet: Build DS specifically Here: a ray to remember value, F

Correctness:

induction! $B C: n=0$ or 1 Ind Hyp: works for
IS: consider n :
Run tire of space: correct formula!
easter to analyze!
for loop! 1 addition + th one store per iteration
$\Rightarrow O(n)$ time
$O(n)$ space to write $E[$ lon $]$

Even better: Do we need A ' that entire array?

- No! Why?

$$
\begin{aligned}
& c^{\prime 2} \\
& \text { Prev car } \\
& \text {-x } 42 \times 3 \\
& \text { next \& }
\end{aligned}
$$

Hs 9 section: Can actually do better?

But wart - F_{n} is exponential!
Specifically,

$$
\begin{array}{r}
F_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n}-\right. \tag{n}\\
\phi=\frac{1+\sqrt{5}}{2} \\
\hat{\phi}=\frac{1-\sqrt{5}}{2}
\end{array}
$$

So... how many bits to write it down?
give you 2^{n} how many bits to write it?

$$
L-\frac{1}{k \text { bits }-0^{\circ 1}:<2^{k+1}}
$$

$\rightarrow n$ bits.

Clarification:
our earlier algorithms use $O(n)$ additions or subtractions atomic, so $O(1)$
If a \# ≤ 64-bit s-sure! But larger? 2^{n} \# takes $\rightarrow \phi^{\text {n }}$ number, ${ }^{\left(\begin{array}{l}(n) \\ \text { nine }\end{array}\right.}$ take n time to milt multiply

Fibonacci Recap: good/bcd.

- "Simple" yet interesting example
- Illustrates how powerful this concept can be.
Downside:
- Not always so dovious how to convert the recursion into an iterative structure! deceptively simple.
\rightarrow simple date structure, "obvious" loop to convert to

Aduce

- Start with the rearsion! use it to prove correctness.
Then, for code:
start at base cases Save them?
Build up "next" level: the recursions that call base cases
Try to formalize this in a loop + data structure format.
Finally: analyze both space a time

Rant about greed:
When they work, "greedy" strategies are very fast + effective!
But-offen such intuitive strategies fail.
Dynamic programming obocktracking will always work.
Well study both, but better to start here.

Next problem: back to LIS
Recall:
Input: Array A [1.0n] of \#s
Output: length of the longest subsequence in A such that each element is snextelement

Subsequence:
take A, a delete any values

$$
E x: \frac{10}{1} \geq 41^{\text {length }} 611 \geq \frac{9}{5}
$$

Aside: will greed work?
aby - recap
Longest Increasing Subsequence copy Why "jump to the middle"?
of Nor Need a recursion! What is our decision?

Aside: How many subsequences are there? $\frac{|\alpha| 2|2| \cdots \frac{12}{n}}{}=2^{n}$
Backtracking approach:
At index i : need last element included if $A[i]$ L last element skip if $A[j>$ lost, try both ways

Result:
 already
Rearsion!

$\rightarrow A[j]$ is bay enough, so try both ways

Code version: 2 \#'s

Problem - what did we want??
input: A[loon].
output. length of LSS what are $i+j$?
could call LIS $(1,2)$ - what would happen?
would include A[1] always-
So: bad!
wrap

$$
-\infty,(10), \frac{1,2,3,4}{\substack{\text { Should } \\ \text { get }}}
$$

Runtime:

$$
\begin{aligned}
& L(n) \leqslant 2 L(n-1)+O(1) \\
& L(0)=1
\end{aligned}
$$

Wot Master Thu friendly no $\frac{n}{c}$ in rearsion

Looks like Towers of Hanoi:

$$
O\left(2^{n}\right)
$$

(con solve, seen in book)

Alternative approach:

At index i, choose next element in the sequence. (means n calls, not $2!$)

Usubrontine
Issue - what was our goal again??

Find $\frac{L S \text { of A }[100 n]}{\operatorname{LISTRST}(1)}$

Final version:

Runtime:

