Algorithms

Baccatradang (part 3)

- Pynmime Progamy

Recap: Canvas -updated
-HW1 messup: groups!
Must sign up for a group each time:
May look like you didn't submit. up for a group!
HW2 oral grading (round 1)
Next Tuesday will wednesday, your group will need to find a $1 / 2$ slot to sign up for with me.
Weill meet via zoom.
(Review HW FAQ, \& find times of your group that might work.)

Backtracking: the pattern
Need to make a sequence of decisions:

- Turns in a game need to dose
- Placing a queen \rightarrow in deacons
- Is next element in the set? $\rightarrow 2$ deasions
So: recusion! (reinforces rearsion)
Need a decision
\rightarrow rearse on all possible answers
Require: some "state" info, so we can bull up the solution (or came).
Downside: SLOW

Longest Increasing Subsequence Why "jump to the middle"?
Need a recursion!
What is our decision?

Aside: How many subsequences are there? $\frac{|\alpha| 2|2| \cdots \frac{12}{n}}{}=2^{n}$
Backtracking approach:
At index C : need last element included if $A[i]<$ last element skip if $A[j>$ lost, try both ways

Result:
 already
Rearsion!

$\rightarrow A[j]$ is bay enough, so try both ways

Code version: 2 \#'s

Problem - what did we want??
input: A[loon].
output. length of LSS what are $i+j$?
could call LIS $(1,2)$ - what would happen?
would include A[1] always-
So: bad!
wrap

$$
-\infty,(10), \frac{1,2,3,4}{\substack{\text { Should } \\ \text { get }}}
$$

Runtime:

$$
\begin{aligned}
& L(n) \leqslant 2 L(n-1)+O(1) \\
& L(0)=1
\end{aligned}
$$

Wot Master Thu friendly no $\frac{n}{c}$ in rearsion

Looks like Towers of Hanoi:

$$
O\left(2^{n}\right)
$$

(con solve, seen in book)

Alternative approach:

At index i, choose next element in the sequence. (means n calls, not $2!$)

Usubrontine
Issue - what was our goal again??

Find $\frac{L S \text { of A }[100 n]}{\operatorname{LISTRST}(1)}$

Final version:

Runtime:

Optima Binary Search trees:
No big questions flagged here, so hopetully mode sense!
This is a huge area of study.
The idea:

- Keys A[1..n] go in a tree, Sorted order
- access frequency for each is f[i]: how mangily tires it we searclad
Tree:
cost to find ALi]?

Ex: (0) tote longer
$f: 100,1,1,1,3=\mathrm{crg}$
A: $1,2,3,4,56$ keys
Best:

must be a BST over A

Formula:

Every node pays +1 for the
root.
So:

\Rightarrow
find best root
 Leas on: choose root.

Recurrence:

$$
\operatorname{OptCost}(i, k)= \begin{cases}0 & \text { if } i>k \\
\sum_{j=i}^{k} f[i]+\min _{i \leq r \leq k}\left\{\begin{array}{c}
\operatorname{OptCost}(i, r-1) \\
+\operatorname{OptCost}(r+1, k)
\end{array}\right\} & \text { otherwise }\end{cases}
$$

for each r, try ASR]

$$
\begin{array}{r}
\text { for each r, try Ass } \\
T(n)=\sum_{r=1}^{n}(T(r) T(n-r)) \\
\\
+\left(\begin{array}{c}
\text { time to call. } \\
\text { cost }
\end{array}\right. \\
\text { II } \\
f(n)=O(n)
\end{array}
$$

aw full: exponential end of booktracking.:

Dynamic Programing

- a fancy term for smarter rearsion:
memorization
- Developed by Richard Bellman

$$
\text { in mid } 1950 \mathrm{~s}
$$

"programming" here actually means planning or scheduling)
Key: when recursing, if many recursive calls to overlapping subcases, remember prior results and don t do extra work!

Simple example:
Fibonacci Numbers

$$
F_{0}=0, \quad F_{1}=1, \quad F_{n}=F_{n-1}+F_{n-2}
$$

Directly get an algorithm:

$$
\begin{aligned}
& \frac{\text { FIB }(n):}{\text { if } n<2:} \\
& \text { else return } n \\
& \text { return } \operatorname{FIB}(n-1)+F I B(n-2)
\end{aligned}
$$

Runtime


```
MemFibo( \(n\) ):
    if \((n<2)\)
        return \(n\)
    else
        if \(F[n]\) is undefined
            \(F[n] \leftarrow \operatorname{MemFibo}(n-1)+\operatorname{MemFibo}(n-2)\)
        return \(F[n]\)
```

Better yet:

```
ITERFIBO( \(n\) ):
    \(F[0] \leftarrow 0\)
    \(F[1] \leftarrow 1\)
    for \(i \leftarrow 2\) to \(n\)
        \(F[i] \leftarrow F[i-1]+F[i-2]\)
    return \(F[n]\)
```

Correctness:

Run time a space

Even better!

```
ITERFIbO2( \(n\) ):
    prev \(\leftarrow 1\)
    sur \(\leftarrow 0\)
    for \(i \leftarrow 1\) to \(n\)
        next \(\leftarrow\) curs + prev
        prev \(\leftarrow\) curl
        curl \(\leftarrow\) next
    return eur
```

Run time/space:

