Algorithms

Backtracking (part 2)

Recap:

- HW1 -due tonight
- HWO-graded! please ached
- Reading - due Sunday
- HW2 - post today
$>$ warning: sectionsusually harder! If I really reed you
\rightarrow to understand, Ill spend class time.
- Check in: all working? (please email)

Backtracking: the pattern
Need to make a sequence of deasions:

- Turns in a game need to choose
- Placing a queen \rightarrow an deacons
- Is next element in the set? $\rightarrow 2$ deasions
So: recusion! (reinforces rearsion)
Need a decision
\rightarrow recuse on all possible answers
Requires: some "state" info, so we can build up the solution (or came).
Downside: SLOW

Example: Subset Sum Given a set X of positive integers and a a asset value ${ }^{t}$) which sums to t ?

Ex:

$$
\begin{aligned}
& \therefore X=\{8,6, ?, 3,10,5,9\} \\
& t=15 \\
& \text { Yes! } \left.\begin{array}{c}
8+7 \\
7+3+5
\end{array}\right]
\end{aligned}
$$

(many in this example) more?

How would we solve?

$$
\begin{aligned}
& \text { we solve! } \\
& \text { recursively } \sim
\end{aligned}
$$

Consider one at a time:

$$
X=\{8,6,7,5,3,1,9\},(5)
$$

Consider 8: either in,
set minus. or out

Formalize this: recursion!

$$
\text { try: } \begin{aligned}
&(X / X[1], t-x[1]) \\
&(X / X[1], t)
\end{aligned}
$$

α base case?

$$
\begin{aligned}
& \text { If } t=0 \text {, true } \\
& t=0, \text { fail } \\
& x=\{03, t>0 \text {, fail }
\end{aligned}
$$

Corredress: Inductive proof, s mates on size of $X, i i^{i}$ moles

$$
\text { se cases: } \underset{\sim}{1.0} \times[1 \ldots n-1] \times[1 \ldots n-2]
$$

Base cases:

$$
i=|x|=0 \quad(\text { so } X=\{ \}):
$$

if $t=0$, true (alg does this)
if $t>0$ or $t<0$, alg gives

Ind Hyp: algorithm for X[1..n-1] or smaller arrays.
Ind step: Full array $X[1.0 n]$ Consider $X[n]$:
are only 2 possibilities:
$x[n]$ in set, or not in
Try both \rightarrow by IH, ind. Fury gives me correct answer for each one
Then if one works, I also returns true.

Text segmentation
Fix a "language", so can recognize "words"
Ex: - English text: dictionary

- palindromes: code a ton that gives true for
- genetic data: code for that is true for particular genetic sequences
\Rightarrow Subroutine Is Word (s) will be given

Q: What happens to a smaller word that overlaps or is later?

Ex:

$\tau_{\text {moke }} n-i+1$ rearsive attempts

Code:

etd

$$
\begin{aligned}
S(n) & =(n-1) S(n-1) \\
& =\sum_{i=1}^{n-1} S(n-i)
\end{aligned}
$$

Issue w/ passing arrays: If I pass A book (by ref, by global), then I need to indicate size is shrmentizg
His solution: (language independent') use an index

Passing by index/ptr/globel/et Given an index i, find a segmentation of the suffix $A[i . . n]$. U
Formalize an (ugly?) reason:
a then code ct:

$$
\begin{aligned}
& \begin{array}{l}
\text { UTs the suffix } A[i, . n] \text { Splittable? })\rangle \\
\text { SPLITTABLE }(i): \\
\text { if } i>n \\
\text { return True } \\
\text { for } j \leftarrow i \text { to } n \\
\text { if } \operatorname{IsWord}(i, j) \\
\text { if } \operatorname{SpLITTABLE}(j+1) \\
\text { return True }
\end{array} \\
& \text { return False }
\end{aligned}
$$

Note: this is harder than it looks!

Longest Increasing Subsequence Why "jump to the middle"?
Need a recursion!
First: how many subsequences?

Back tracking approach:
At index i :

Given two indices i and j, where $i<j$, find the longest increasing subsequence of $A[j . . n]$ in which every element is larger than $A[i]$.

$$
\operatorname{LISbigger}(i, j)= \begin{cases}0 & \text { if } j>n \\
\operatorname{LISbigger}(i, j+1) & \text { if } A[i] \geq A[j] \\
\max \left\{\begin{array}{c}
\operatorname{LISbigger}(i, j+1) \\
1+\operatorname{LISbigger}(j, j+1)
\end{array}\right\} & \text { otherwise }\end{cases}
$$

```
LISbigGER \((i, j)\) :
if \(j>n\)
return 0
else if \(A[i] \geq A[j]\)
return \(\operatorname{LISbigger}(i, j+1)\)
```

else
$s k i p \leftarrow \operatorname{LISbigGer}(i, j+1)$ take $\leftarrow \operatorname{LISbigger}(j, j+1)+1$ return max $\{s k i p$, take $\}$

