Algorithms

Recursion Backtracking

- Usual Reading - HW1 due Wednesdy

Next à how to generalize? T(n) = r(n) f(n) Master fun What it means: Algorithm (n): > // code 10 for it Algorithm (n) total P(v) ops >//more code vehildren f(n) (f(n))level cort nodes $\left(f\left(\frac{n}{c^{2}} \right) \right)$

depth cepth Solving: those trees work in # nodes. on level i each $\log_{c} n$ $= O(\log n)$ depth: Ex: n in MS (2) nother once possibilities 3 decreasing geom. series (like my will domiate f(n) will domiate increasing: # nodes dominates loger balanced like were sort) (T)

50 Other examples Medians: find "middle" elemen vere covered: - looking for any k wo QUICKSELECT(A[1..n], k): if n = 1return A[1] else Choose a pivot element $A[p] \downarrow$ $r \leftarrow PARTITION(A[1..n], p)$ if k < rreturn QUICKSELECT(A[1..r-1], k) else if k > rreturn QUICKSELECT(A[r+1..n], k-r) else return A[r]Figure 1.12. Quickselect, or one-armed quicksort indert 9n=9n-1+1 $(n) \leq Q(n-1)$ $\left(\right)$

"Faster" version) = why 56 MomSelect(A[1..n], k): if $n \le 25$ ((or whatever)) use brute force else)(n) $m \leftarrow \lfloor n/5 \rfloor \leq$ for $i \leftarrow 1$ to m $M[i] \leftarrow \text{MEDIANOFFIVE}(A[5i-4..5i]) \langle \langle \text{Prute force!} \rangle \rangle$ $mom \leftarrow MomSelect(M[1..m], [m/2])$ ((Recursion!)) $r \leftarrow \text{PARTITION}(A[1..n], mom)$ if k < rreturn MomSelect(A[1..r-1], k) ((Recursion!)) else if k > rreturn MOMSELECT(A[r+1..n], k-r) ((Recursion!)) else return mom medion of 5 Small C

Itis picture: 4 bul cell the set of that array of M/S medions Result: temporery medicn, not perfect, but with Felements less + 4 greater n/e m/y

Kintme:

MomSelect(A[1..n], k): ((or whatever)) (O(()) if $n \le 25$ 100P. use brute force else $m \leftarrow [n/5]$ for $i \leftarrow 1$ to m $M[i] \leftarrow \text{MedianOfFive}(A[5i-4..5i])$ (Brute force!)) - MomSelect(M[1..m], [m/2])((Recursion!)) mom 5 $r \leftarrow \text{Partition}(A[1..n], mom)$ if k < rreturn MomSelect(A[1..r-1], k) ((Recursion!)) else if k > rreturn MOMSELECT(A[r+1..n], k-r) ((Recursion!)) else return mom VPCUSIUR Callanot earsive cell Size 4 A) P (+1 \mathcal{F} 6 N M use Mas

 $\frac{4}{20} + \frac{15}{20}$ N MESize . . B 5 a 374 NS 25 NE $(\frac{19}{20})$ 'n 14/32 07 4/3 (19) log n N

icle 1 129 Multiplication: facto X= 0 SplitMultiply(x, y, n): if n = 1return $x \cdot y$ else $a | x / 10^{m} |; b x \mod 10^{m}$ $\langle \langle x = 10^m a + b \rangle \rangle$ $\langle \langle y = 10^m c + d \rangle \rangle$ $c \leftarrow \lfloor y/10^m \rfloor; d \leftarrow y \mod 10^m$ $e \leftarrow \text{SplitMultiply}(a, c, m)$ $f \leftarrow \overline{\text{SplitMultiply}(b, d, m)}$ $g \leftarrow \text{SplitMultiply}(b, c, m)$ $h \leftarrow \text{SPLITMULTIPLY}(a, d, m)$ return $10^{2m}e + 10^m(g+h) + f$ $\gamma = (a \cdot 10^{n} + b)(c \cdot 10^{n} + c)$ Kuntine: \square O(n^{log_4} n/2 Ŋ₽S, $\mathcal{D}(n^2)$ FASTMULTIPLY(x, y, n): if n = 1return $x \cdot y$ alon+b/clontd else $m \leftarrow \lceil n/2 \rceil$ $\langle \langle x = 10^m a + b \rangle \rangle$ $a \leftarrow \lfloor x/10^m \rfloor; b \leftarrow x \mod 10^m$ $\langle\!\langle y = 10^m c + d \rangle\!\rangle$ $c \leftarrow \lfloor y/10^m \rfloor; d \leftarrow y \mod 10^m$ $e \leftarrow \text{FastMultipla}(a, c, m)$ $f \leftarrow \text{FASTMULTIPIX}(b, d, m)$ ac + $g \leftarrow \text{FastMultiply}(a - b, c - d, m)$ return $10^{2m}e + 10^{m}(e + f)$ g trick ae Kuntme: F (n)00 apply MT: OC) vg nog

Exponentiation: compute # of Still open mulhplations to get and (Amazing, right??) Can do n The algorithms do very well : -to compute any need Ollog n multiplications However, doesn't achieve Dowest possible for over value - it's just with a constant!

Ch 2: Back fracking: Many of you saw in AI, appcsently I (Don't worry if not...) Why we discuss: It's really recursion (again)! Also really a form of prute force. ty eventhing recursively, I see that works.

gheen per N Queens pour dol. row Atij = column auge one i auge one iIssue: representation! His choice: one per row, so store index of queen on rows in array. Now, how to solve: brute force! Place a queen + top going If you get stuck, "unplace" last queen + back up

The free (b/c pretty) i 習 Ò Solutions 響 Figure 2.3. The complete recursion tree of Gauss and Laquière's algorithm for the 4 queens problem. Problem (a hard part): Formalizing this in cook. Sketch: try each pos j d rease on viable vert choises

Runtine; $\mathbb{Q}(n) =$