Algorithms

Rearsion Bocktracking

Recap

- Usnal Readirg
- HW1 due Wedresday

Next if how to generalize?

$$
T(n)=\frac{r}{\frac{T\left(\frac{n}{c}\right)}{\text { poster }}+\frac{f(n m}{(h)}}
$$

What it means
Algorithm (n) :
/l code
for $i<1$ to r Algorithm $\left(\frac{n}{c}\right)$
$\xrightarrow{\substack{\mathrm{total} \\ f(n) \rho^{s}}} \longrightarrow /$ more code
\qquad $f(n)$ $f\left(\frac{n}{c}\right)$ $f\left(\frac{n}{c^{i}}\right)-$. level $i=r^{i} r^{i}$

Solving: those treas!

Theorem 4.1 (Master theorem)

Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the nonnegative integers by the recurrence
$T(n)=\begin{gathered}a T(n / b) \\ 4\end{gathered}+\begin{gathered}f(n) \\ 0\end{gathered}$
where we interpret $n \nmid b$ to mean either $\lfloor n / b\rfloor$ or $\lceil n / b\rceil$. Then $T(n)$ has the following asymptotic bounds:
f. If $f(n)=\underbrace{O\left(n^{\log _{b} a-\epsilon}\right.})$ for some constant $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.

If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$.
If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$, and if $a f(n / b) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$.

Recurrence: Master Theorem

$$
T(n)=a T(n / b)+f(n) \quad \text { where } f(n)=c n^{k}
$$

1. $\int a<b^{k}$
2. $a=b^{k}$
3. $a>b^{k}$

$$
T(n)=\left\{\begin{array}{ll}
\Theta\left(n^{\log _{b} \alpha}\right) & f(n)=O\left(n^{\log _{b} \alpha-\varepsilon}\right) \\
\Theta\left(n^{\log _{b} \alpha} \log n\right) & f(n)=\Theta\left(n^{\log _{\alpha} \alpha}\right) \\
\Theta(f(n)) & f(n)=\Omega\left(n^{\log _{g} \alpha+\varepsilon}\right) \text { AND } \\
& a f(n / b)<c f(n) \text { forlargen }
\end{array}\right] \quad \varepsilon>0
$$

Other examples $k=\frac{n}{2}$
Medians: find "middle" element. Two were covered:

$$
\begin{array}{ll}
p & n-p \underset{q_{n}=q n-1+1}{\text { ind }} \\
k<p^{-1} & G Q(n)
\end{array}
$$

His pictive: "bbull

4zex
Tbise bithen
that array of n / s medons

Result: temporery wedian, not perffect, but with $\frac{n}{4}$ elements less $+\frac{n}{4}$ greater

Runtime:

Multiplication: factoring trick!
\qquad
Runtime:

apply $\rightarrow M(n)=4 M\left(\frac{n}{2}\right)+O(1)^{x}$
VS.

$$
\begin{aligned}
& =O\left(n^{\log _{2} 4}\right) \\
& =O\left(n^{2}\right)
\end{aligned}
$$

Runtime: $F(n)=3 F\left(\frac{n}{2}\right)$, $0(1$ algebra trick apply $M T: 00) \log ^{\log 23} 2 x\left(n^{\log _{2} 3}\right)$

Exponentiation: compute \# of
Still open! mulhplectons to get a^{n}
(Amazing, right??) ${ }^{\text {can do } n}$
The algorithms do very well:

- to compute a^{n}, need $O(\log n)$ multiplications
However, doesn't achieve lowest possible for. every value -it's just with a constant!

Ch 2: Back tracking:
Many of you saw in AI, apparently!
(Don't worry if not...)
Why we discuss:
It's really rearsion (again)!
Also really a form of
brute force: brute force:
try everything rearsuely,

Issue: representation!
Hes choice: one per row, so store index of queen on rows in array.

Now, how to solve:
brute force! Place a queen + keep going.
If you get stuck, "unplace" last queen + back up

The tree (b/c pretty) i"

Problem (a hard part):
Formalizing this in code.
Sketch: try each pos io - rearse on viable next choruses

Figure 2.2. Gauss and Laquière's backtracking algorithm for the n queens problem.

Runtine:

$$
Q(n)=
$$

