Algorithms

Recarsion

Recap/notes

- Perusal: open from Canvas - 5 comments each from here out, please
-HWO: Wednesday. Note: You Submit in groups! Please add to ore (even if solo). Before adding to an easting one, ask!
- Office hows:

Tomorrow 10 am con discord, switch to zoom if needed)

Recursion

- If you can solve directly (usudly because input is small),
do it!
- Other wise, reduce to simple (usually smaller) instances of te same problem.
Result Code that calls smaller instance of itself

Rearsion Fairy

- Helps to solidify that "black box" mentality, so you dort keep unpacking
the next level.
(She's also called the "induction hypothesis".)

Towers of Hanoi: runtine instince Le $t H(A)=$ runtime of size 1 of $-(1)$
 How? ? (no lopp tralls itself!

$$
\begin{aligned}
& \text { Goal:calculater H(n) } \\
& H(n) \neq 2 H+(n-1)+1 \text { O(1) } \\
& \rightarrow a_{n}=2 a_{n-1}+1
\end{aligned}
$$

$$
\begin{aligned}
& H(n)=2(H(n-1)+1 \\
& =2[2+(n-2)+1]+1 \\
& =2(2(2 H(n-3)+1)+1]+1=00 \\
& =2\left(2(2(2 \cdots+10)+1)+1=0\left(2^{n}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
G(n) & =(G(n-1)+1 \\
& =(G(n-2)+1)+1 \\
& =\left(\frac{11}{(G(n-3)+1)+1)+1}\right. \\
\vdots & =\underbrace{(((G(G(1)+1)+1)+1))}_{\text {repeat n-1tines }}+1 \\
& =a d d 1, n \text { times } \\
& =O(n)
\end{aligned}
$$

If $n>1$
rearse on $n-1$ do O(1) work

Us For loop: $i=n-1$

Q: The, lemma, corollary, etc.
The difference?
there isnit-one is just "bigger"
lemma $=$ small the
In merge, lemma is actually herder!
Not length, but "impobance."
In this book, main runtime/correctress is them, isubroutires get lemmas.

Lemma: Merge subroutine correct merges $A[1.0 m] *$ $A[m+1 . n]$ Cassuming they we sorted.

So: Base case $k>n$, so on "last" loop Heration
so B[t.on] is sorted!

$$
k=0 \text { (either way) }
$$

Ind Hyp: assume worked up to $(k-1)^{\text {st }} 100 p$ iteration

$$
\begin{aligned}
& \left.\rightarrow A[1] \bar{m}_{i} \frac{m_{i} w+1}{m} \bar{n}\right]_{j \leq n+1} \\
& \left.\rightarrow B\left[\operatorname{sen}_{i} \frac{i^{2}-y}{k}\right]^{j}\right]^{j}
\end{aligned}
$$

Ind Step: now - $k^{\text {th }}$ loop iteration
Well: Cases! Why?
$i>m$: dove w/ $1^{\text {st }}$ he f h
$i>m$: dove w
nd $^{\text {nd }}$ her dore ma ff
$i+j$ in md de

Then, our cases:
$i>m$:
copy next thing

$$
\left.\begin{array}{l}
\text { copy } 2^{\text {nd }} \\
i \rightarrow n: \text { hop th } \\
1 \text { st } y \text { from }
\end{array}\right]
$$

owise: find smaller of 1 $A[i]+A[j]$, a ropy it to $k^{\text {th }}$ spot

Nice port:
Once we know MERGE works, the induction for Merge Sort is pretty easy!
Note: example of "strong" induction
(in Merge Sort)
Base case: $n=0$ or 1
IH works for $k<n$
MS: ${ }^{\text {(believe in rec. farl y) }}$ half.
works for n twerge correctly merges the 2

Domain transformation:

$$
T(n)=T\left(\left\lceil\frac{n}{2}\right\rceil\right)+T\left(\left\lfloor\frac{n}{2}\right\rceil\right)+o(n)
$$

Quicksort:

$$
T(n)=\max _{1 \leq r \leq n}(T(r-1)+T(n-r)+O(n))
$$

Solving:

Note: "Median of three"

- Somewhat better can still be good!
Remember, while $O_{n}{ }^{2}$) worst case, this is the best sorting algorithm in practice.
Issues to consider:

Recursion Trees:
Let's start with an example.

$$
T(n)=3 T\left(\frac{n}{2}\right)+n^{2}
$$

How can I "visualize" the time spent?

Note on reading:
If you dort follow the bit If you dort follow a ceilings -
on ignoring floors
dort stress!
I need you to know you can do this, bat wort ask you to prove it.

